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ABSTRACT
We consider the problem of proactive retention aware caching in
a heterogeneous wireless edge network consisting of mobile users
connected to a server and associated to one or more edge caches.
Our goal is to design a caching policy that minimizes the sum of
content storage costs and server access transmissions costs over
two design variables: the retention time of each cached content
and the probability that a user routes content requests to its asso-
ciated caches. We develop a model that captures multiple aspects
such as cache storage costs and several capabilities of modern
wireless technologies, such as server multicast/unicast transmis-
sions, device multipath routing, and cache access constraints. We
formulate the problem of Proactive Retention Routing Optimiza-
tion (PRRO) as a non-convex, non-linear mixed-integer program.
We prove that it is NP-Hard under both multicast/unicast modes,
even when the caches have a large capacity, and develop a greedy
algorithm that has provable performance bounds. Finally, we
propose a heuristic for the capacitated cache case that has low
computational complexity. Systematic evaluations including real
data sets demonstrate the effectiveness of our approach, compared
to the existing caching schemes.
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1 INTRODUCTION
Wireless edge caching advocates adding storage at the wireless
edge network infrastructure to address the explosive growth in
mobile data demand. The main motivation and effort has been
to reduce response time and network infrastructure energy, band-
width or monetary costs. In this paper, we explore the less ex-
plored dimension of cache storage cost in wireless edge networks.
Cache storage cost is expected to play an increasingly impor-
tant role due to the increased heterogeneity in caching services,
heterogeneity in wireless infrastructure and usage of high per-
formance flash caches. Existing edge caches focus on delivery
of content such as web objects, files, videos or images. In the
near future, they will host data needed by edge cloud computing
services such as machine learning and classification tasks (ob-
ject/face/speech recognition) or even containers/VM images that
execute such services [1]. Edge cloud computing services adopt
the cloud usage-based models, where running services or storing
data incurs cost for the duration they are retained in the cache.

In terms of network heterogeneity, the all-IP nature of modern
4G cellular networks enables placing caches at various parts of
the cellular infrastructure: from the evolved packet core (EPC)
to macro/pico/femto base stations. Small cell 5G heterogeneous
networks (HetNets) advocate converged cellular and Wi-Fi ar-
chitectures. This convergence provides more opportunities for
cache deployment in heterogeneous wireless edge, but at a higher
storage cost, especially as caches are deployed closer to the wire-
less user. In addition to telcos, the 5G convergence may also
create a competition among Internet content providers; whoever
pays a higher storage cost (for renting cache space in the wireless
infrastructure) gets to extend their own services closer to the wire-
less user. Finally, another aspect of cache storage cost has been
the increasing deployment of flash caches. Retaining data in a
flash cache reduces response time but also incurs a cost owing to
decreasing cache lifetime per use [2].

In this paper, we address the problem of proactive retention-
aware caching and request routing for edge wireless networks.
Our objective is to minimize the sum of cache storage cost and
server access transmission costs. In contrast with reactive caching
mechanisms such as LRU, proactive caching caches content in
advance based on predictions of content popularities, user mobility
patterns, etc. Proactive caching has become popular in edge
wireless networks due to the availability of large amounts of
user data that enable accurate predictions using machine learning
models [3, 4].



Our model addresses several new aspects compared to previous
work on wireless edge caching. First, it accounts for cache storage
cost under a usage-based model using content retention times as
optimization variables. Second, it accounts for the general case
when cache coverage areas overlap and user content requests can
be routed to one or more caches. Modern mobile devices such as
smartphones can utilize multiple wireless interfaces and multipath
networking technologies [5, 6]. Third, it accounts for both unicast
and multicast modes of content transmission by the server (upon
a cache miss). Multicast is an increasingly popular transmission
mode for wireless multimedia content. It has been incorporated
in 3GPP specifications for the proposed technology for LTE, the
Evolved Multimedia Broadcast and Multicast Services (eMBMS)
[7]. Fourth, in addition to cache capacity constraints, it captures
practical cache access constraints which limit the number of users
that can simultaneously request contents from a cache.
Our contribution: We introduce and formulate the Proactive
Retention Routing Optimization (PRRO) problem as a non-linear,
non-convex, mixed-integer program. This problem is highly chal-
lenging: in addition to the non-linearity and non-convexity of the
objective, it is coupled across contents (due to cache capacities),
time slots (due to multipath request routing) and caches (in case
of server multicast).

We first investigate PRRO for the more challenging case of mul-
ticast server access costs. We prove that the problem is NP-Hard
even under no cache capacity constraints (Theorem 4.1). We then
propose a greedy algorithm that gives a constant-factor approx-
imation on the performance of the optimal (Algorithm 1). With
retention variables, our problem turns out to be non-convex, thus
we cannot apply standard rounding techniques. Instead, we ana-
lyze the performance using two principal techniques: We define a
class of solutions, which we call tight solutions (Definition 4.3),
and show that every optimal solution for a given instance can be
transformed into a tight optimal solution without affecting the
value of the objective (Corollary 4.4). Thus our greedy algorithm
focusses only on the class of tight solutions. We also show that
for any given instance, there exists another instance with a much
simpler network (Lemma 4.5) which has equal gap between the
output of our greedy heuristic and the optimal solution as the
original instance. These two results enable us to focus on analyz-
ing tight solutions in these sparse instances in order to bound the
performance of the greedy heuristic (Theorem 4.6).

We next investigate PRRO for the unicast server access cost
case. We prove that the problem remains NP-Hard but a similar
greedy approximation algorithm applies using the unicast-based
optimization objective. We prove a bound on the performance of
this algorithm in terms of k, where k is the maximum number of
users a cache can serve (Theorem 4.8). Finally, we develop a low
complexity heuristic based on PRRO to create a feasible solution
for the case when the caches are capacitated (Algorithm 2).

We evaluate our algorithms based on a real-world dataset by
explicitly modeling user mobility and the overlapping cache cov-
erage for a wide range of parameters. Through simulations, we
observe that the algorithms are fast to execute and perform very
close to the optimal for reasonable parameter choices. Finally, we
compare the results for the cache capacitated case against various
other popular policies and prior works. In our simulations based

on real-world data, we show that the solutions computed by our
heuristics are close to the optimal solutions. Moreover, taking
advantage of multiple paths in the user-cache association graph
(in order to jointly optimize storage and routing) can result in sig-
nificantly lower costs than making a user associate a-priori with a
cache (or alternatively creating a disjoint user base for each cache)
and then optimizing the cost based on locally popular contents at
each cache.
Paper organization: The rest of the paper is organized as follows:
We begin by describing related work in Section 2. We define the
system model and formulate the problem of Proactive Retention
Routing Optimization (PRRO) in Section 3. Section 4 studies
the multicast mode of server transmissions wherein we derive
an upper bound on the performance of a greedy heuristic using
tight solutions under the large cache assumption (the case when
the problem decouples over different contents). We continue
the discussion with a unicast mode of server transmission in
Section 4.4. We propose a heuristic for the cache capacitated case
in Section 5, and evaluate the performance of our algorithms on a
real data-set in Section 6.

2 RELATED WORK
Unicast proactive caching. Proactive caching in small cell net-
works has been addressed in [8]. Poularakis et al. addressed
a similar problem for minimizing server downlink cost [9]. De-
hghan et al. addressed a joint request routing and caching problem
for minimizing access delay, where users can route requests to
multiple caches [10]. A recent work [11] considered proactive
caching without multicast. These works do not take cache storage
costs (i.e. retention costs) into account and assume unicast server
transmissions.

Multicast proactive caching. Several recent works study
proactive caching with multicast server transmissions [2, 12–14].
Storage is only considered in [2, 7] which aim to optimize the
sum of storage and server cost. The work in [7] jointly optimizes
multicast schedules with caching decisions. This storage cost
model does not capture the content retention time aspect; it is a
constant that depends on the binary caching decisions. In addi-
tion, it assumes that multicast scheduling is a lower layer control
knob only controllable by the telecom operators. In contrast, in
our work, cache retention times can be easily implemented at
higher layers by both operators and content providers. Recent
work [2] optimizes for cache retention times, however, this work
assumes non-overlapping cache areas and does not allow routing
user requests to multiple caches.

Timer-based caching. Deciding what to cache and for how
long is closely tied to the work on content cacheability. In earlier
works, every proactively cached content was stored in cache for a
frame of fixed duration (see [12, 15–17]). Another line of work
considered the problem of finding the optimal timers for every
content under various objectives. For example, [18, 19] studies
cache hit-rate maximizing timers, [20] studies utility maximizing
timers, and [21] obtains optimal timer values to monetize an on-
demand caching application. Although numerous, none of the
above works optimize the problem with respect to cache storage
cost, multicast server transmissions or multi-path request routing.
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Figure 1: Proactive caching in a 5G Hetnet.

3 MODEL AND PRELIMINARIES
In this section, we introduce the system model, state the assump-
tions and formulate the problem.

3.1 System Model
We consider the problem of proactive retention-aware content
caching in a 5G HetNet architecture [22, 23] consisting of a base
station instrumented with a content server housing M contents,
a set of N caches, and a set of I mobile users. Let [M ], [N ],
[I] denote the set of all contents, caches, and users, respectively.
Caches in our model are higher layer entities that can control one
or more base stations or access points. This decouples the cache
from the physical device it is deployed at and allows caches to be
deployed at physical locations of the wired network infrastructure
in addition to wireless devices (e.g. a cache could refer to the
storage unit in a small cell base station (SBS) or in a WiFi-access
point). It also allows the scenario where one wireless base station
has a cache and is connected to other base stations without caches
that still serve users.

We assume that the server holds M contents of equal size.
This assumption is justified in real systems which break contents
in equal size chunks (e.g. [24, 25] make this assumption). A
downlink multicast transmission of a content from the server can
be received by all the users (as in [23, 26]); a downlink unicast
transmission is a directed point-to-point transmission received
only by the targeted cache. In our model, the caches can employ
either multicast or unicast mode of transmissions (depending
on the underlying application/technology) to locally serve the
demands of the associated user-base.

We consider a slotted time system, which divides a continuous
period of off-peak and peak hours into T equal-length slots, re-
ferred to as a frame. Each slot in a frame is of duration dT time
units. We assume delay intolerant service, i.e. in a given time
slot of duration dT , for every requested content that leads to a
cache miss, the server transmits the content during the time slot. A
delay-intolerant service assumption is pertinent to serving media
contents, user-generated, or video content [16, 25]. The value of
dT is determined by the delay intolerance requirements, whereas
the value of T is determined by the periodicity in the request

patterns [2, 11, 16] and/or is chosen to suit the mobility footprint
of users in a specific application (see Section 6 for details).

Users request content independently at every slot during the
frame. Let pmi denote the probability that the demand for content
m is generated at user i in a given slot (assumed to be i.i.d. over
slots). We assume that the request probabilities are either known
or can be learned (see [27, 28]).

Given the content demands at time t = 0 and a frame of T
slots, caching decisions involve determining the retention times
for every content at the beginning of the frame. Let ymn denote
retention time of content m at cache n, which is an integer that
takes value in the set {0, 1, . . . , T}. These caching decisions
respect the individual cache capacities. We denote the storage ca-
pacity at cache n by Bn, implying that cache n can accommodate
at most Bn contents at time t = 0.

A mobile user can associate with the caches that are in charge
of the network infrastructure of the area they are moving into.
Obviously, a user cache association is possible only when trans-
missions from the cache can be received with sufficiently high
success probability by the user (given the channel conditions,
fading, etc.). Association to multiple caches means that, as a
user moves, it discovers, registers to one or more caches and
maintains network paths to them. A mobile user finds caches
either by direct discovery, by sending discovery packets through
multiple wireless interfaces, or by obtaining the IP addresses of
caches in its vicinity from the server. From the list of associated
caches, a user decides to activate some of the associated paths
and route a fraction of requests to each one of these caches. The
optimal routing fraction for every content is computed by the
(infrastructure) caches, and once they are determined, routing the
optimal fraction of requests in any slot can be initiated by the user.
Let qimn denote the request routing probability with which user
i routes content m to cache n. The network can be expressed
as a three-layered hierarchy as shown in Figure 1 consisting of
a server, N caches and I users. Figure 1 shows that user i is
connected to and hence can request a given content from either
cache 1 or cache 2, with probabilities qi1 and qi2 respectively
such that the probabilities sum to one. One goal of this work is to
determine the optimal routing of user requests to caches, given the
user-cache association patterns, i.e. the optimal values of these
routing probabilities. This is a generalization of the model used in
[2] wherein cache coverage areas did not overlap and a given user
could only get served by a single cache. Our model of allowing
for multiple user-cache connections captures the fact that current
mobile devices come with multiple wireless network interfaces
[6] and can use multi-homing technologies such as LISPmob [29]
or multi-path TCP [5].

All the requests for a content while it is in the cache lead to
a cache hit, in which case the requests are locally served by the
caches. Storing a content m in cache n with retention ymn incurs
a storage cost, αg(ymn), where α is the storage cost parameter,
α ≥ 0, and g(·) is a function of retention time, ymn. In this
work, we assume that g(·) is an increasing linear function of
retention times with g(0) := 0. The case of a convex g(·) is still
open. Our choice of an increasing linear function can be justified
briefly as follows: When storage cost is interpreted as the price
paid for occupying the cache, then it is natural to see that the



cost increases the longer we keep a content in cache, since this
cannot be done without declining to keep other contents, owing to
the cache capacity constraints. When storage cost is interpreted
as memory damage then, as explained in [2, 24, 30], a higher
retention time can potentially lead to a higher memory damage.

In the event of a cache miss (which can occur either because
the content is not stored or because it has expired), the request is
forwarded to the server. In the case of a multicast transmission,
a multicast download cost Dmul is incurred by the server for
transmitting a content to all the caches upon miss. In the case of
a unicast transmission, a unicast download cost Duni is incurred
by the server for a unicast transmission to each user upon miss.
We denote D as the generic download cost (multicast or unicast)
which will be clear from the context. Download costs may reflect
average CapEx or OpEx costs of the network operator in case of
either unicast or multicast. We assume that download cost from
the server is much higher than download cost from the caches,
thus, in what follows, we ignore the costs of transmissions from
the caches. We also assume that the download cost from the server
is ≥ the storage cost parameter, i.e. Dz ≥ α for z ∈ {mul, uni},
which is reasonable since transmissions over backhaul is more
expensive than storage. Our downlink model for multicast is
similar to [7, 25], wherein a single transmission from the server
is received by all users. This assumption is motivated by the
use of multicast transmissions in the recent work in delivering
multimedia contents over cellular networks [7, 31] besides being
incorporated as a wireless standard in the upcoming 5G network
(3GPP specifications) due to its superior efficiency.

We assume that the transmissions are carried over a wireless
medium where the underlying PHY/MAC layer technology associ-
ated with the user is capable of mitigating the effect of interference
at both the transmitter (cache) and at the receiver end. For ex-
ample, a user can receive multiple concurrent transmissions by
a cache via multiple wireless interfaces as in [5] or by invoking
multi-homing feature [29]. Interference free transmission can be
achieved by synchronizing base stations to transmit simultane-
ously at the same frequency band for multicast services in cellular
networks (3GPP and WiMax) [7] or in WiFi networks [6].

3.2 Problem Formulation
To concretely formulate the problem, we define the following
terms. Let y denote the M × N retention time matrix for M
contents on N caches, where the (m,n)th entry corresponds
to ymn ∈ {0, 1, 2, . . . , T}. Then, the storage cost of caching
content m over the frame is given by,

Costs(y) =
∑
n∈[N ]

αymn. (1)

Let q denote the routing matrix of size I ×M × N , with the
(i,m, n)th entry corresponding to the routing probability qimn, i ∈
[I],m ∈ [M ], n ∈ [N ]. Let U(n) and U(S) denote the sets of
all users that are associated with cache n and a set of caches S
respectively. Also, let H(i) and H(S) be the set of all caches
associated with a user i and a set of users S respectively.

3.2.1 Multicast download cost. In case of a multicast server,
a cache miss on content m incurs a server multicast cost Dmul if

the content is requested from at least one of the caches that do
not have the content. Thus with multicast, the probability that the
server transmits a content m in a given slot t is:

P ( Server transmits content m)

= 1− P ( none of the caches request m from server)

= 1−
∏
i∈[I]

P

(
i does not request m

∪ requests from user i for m are locally served
)

= 1−
∏
i∈[I]

(
(1− pmi) +

∑
n∈H(i):ymn≥t

pmiqimn
)

(2)

Thus the multicast cost for downloading contentm over the frame
is given by,

Costmul(y,q) = D

T∑
t=1

P ( Server transmits content m) (3)

3.2.2 Unicast download cost. Upon a cache miss on con-
tent m, a server unicast cost Duni is incurred if the content is
requested from a cache that does not have the content stored.
Thus the cost of unicasting content m over the frame is given by:

Costuni(y,q) = Duni

T∑
t=1

∑
i∈[I]

∑
n:ymn<t

pmiqimn, (4)

where the second summation is over all the users that request the
content from cache n, the third summation is over all the caches
where the content retention time has expired, denoted by the event
ymn < t, and pmiqimn is the probability that user i requests
content m from cache n in any slot.

3.2.3 Access constraints. We assume that cache i asso-
ciates with at most ki users. This is especially relevant in the case
of small cell base stations in HetNets or in WiFi-access points
where each cache is reachable/register to only a few users due to
bandwidth/hardware constraints. Thus we have U(n) ≤ kn for
every cache n ∈ [N ].

3.2.4 The formulation. Let Lz(y,q) denote the sum of
storage and download costs, where z ∈ {uni,mul}. Then, the
aggregate cost over all contents is given by:

Lz(y,q) =
∑

m∈[M ]

(Costs(y,q) + Costz(y,q)) (5)

We now state our problem as follows: Given the content demands
and the network topology, how long should a content be stored in
the caches (i.e. determining retention times ymn) and how should
the user requests be routed to the caches (i.e. determining routing
probabilities qimn) so that the aggregate cost is minimized subject
to the cache capacity and user-cache association graph? Thus,
the problem of Proactive Retention Routing Optimization (PRRO)



Notation Meaning

pim Per-slot probab. of request of content m for user i.
qimn Routing fraction of content m from user i to cache n.
ymn Duration for which cache n stores content m.
I,M,N Total number of users, contents, caches resp.
[I], [M ], [N ] The set of all users, all contents, all caches resp.
pi, qin, yn Restrictions of pim, qimn, ymn for MIP-a

which considers a single content.
y,q The 2D/3D matrices of ymn, qimn resp.

(and vector/2D matrix of yn, qin for MIP-a resp.)
α The storage cost coefficient
Dmul, Duni Server transm. cost for multicast/ unicast.
D Represents Duni or Dmul in the context.
(y,q) Any solution and an optimal solution resp.
L(y,q) Objective function value of a solution (y,q).
(y∗,q∗) An optimal solution.
(yl,ql) The solution of LIN-MUL heuristic.
Un, U(S) Set of users associated with cache n or set S.
Hi, H(S) Set of caches user n or set S of users associates with.
F (y) Set of caches storing content in a tight solution (y,q).
J(y) {i ∈ [I] : yn = 0, ∀n ∈ H(i)}

Table 1: Notation

can be formulated for z ∈ {uni,mul} as,

PRRO : min
y,q

Lz(y,q)

s. t.
∑
m∈M

1ymn>0 ≤ Bn, ∀n ∈ [N ] (6)

ymn ∈ {0, 1, 2, · · · , T}, ∀n ∈ [N ],m ∈ [M ]
(7)∑

n∈H(i)

qimn = 1, ∀i ∈ [I],m ∈ [M ], (8)

qimn ∈ [0, 1], ∀i ∈ [I],m ∈ [M ], n ∈ [N ] (9)

U(n) ≤ kn ∀n ∈ [N ] (10)

where 1ymn>0 is an indicator function which equals 1 if ymn > 0
and 0 otherwise. The first constraint (6) in the above formulation
shows that the number of contents prefetched do not exceed the
individual cache capacities. Constraint (7) models that the reten-
tion times take integral values in 0 to T , with a 0 meaning that
a content is not stored. Constraint (8) indicates that user i can
request content m only from the caches it is connected to. Finally,
constraint (9) indicates that the routing probabilities are between 0
and 1 for all possible {user, content, cache} pairs. We summarize
most of the recurring notation in Table 1.

4 ANALYTICAL RESULTS WITH LARGE
CACHES

In this section, we analyze the case when the caches are large, i.e.
caches do not have a capacity constraint. We propose a greedy
approximation algorithm to solve the problem and give theoretical
bounds on its performance. We consider the cache capacitated
case in Section 5.
Note: All the omitted proofs and the proofs for which we only
provide an outline can be found in the Appendices of [32].

With uncapacitated caches, the problem decouples across con-
tents, thus PRRO gets reduced to optimizing for each individual
content. Hence, we only focus on a single content throughout the
section. We redefine the variables for a single content. With a
slight abuse of notation, let y denote the 1 × N retention time
vector with the nth element denoting the retention time, yn, of
the content at cache n. Similarly, let q denote the I ×N routing
probability matrix for the content with the (i, n)th element set to
qin. Thus the content request probability due to user i at cache n
is given by piqin.

The cost of a solution (y,q) with multicast server download
mode in Equation (5) can thus be expressed as,

Lmul(y,q) =∑
n∈[N ]

αyn +Dmul

T∑
t=1

1− ∏
i∈[I]

(1− pi) + pi
∑

n:yn>t

qin


(11)

Similarly, cost of a solution (y,q) with unicast server download
mode in Equation (5) can thus be expressed as

Luni(y,q) =
∑
n∈[N ]

αyn +Duni

T∑
t=1

∑
i∈[I]

pi
∑

n:yn>t

qin (12)

Thus for uncapacitated caches, without loss of generality, solving
PRRO is equivalent to solving independent subproblems where in
each subproblem we have been given only a single content. We
refer to such a subproblem with only single content as MIP-a.

MIP-a : min
y,q

Lz(y,q)

s. t. yn ∈ {0, 1, 2, · · · , T}, ∀n ∈ [N ]∑
n∈H(i)

qin = 1, ∀i ∈ [I]

qin ∈ [0, 1], ∀i ∈ [I], n ∈ [N ]

U(n) ≤ kn, ∀n ∈ [N ]

THEOREM 4.1. MIP-a is NP-hard.

We give the full proof in [32]where we show that for D � α,
set cover is a special case of MIP-a. Note that the problem is
NP-Hard even without cache capacities, due to the overlapping
cache coverage areas. This stands in contrast with two works with
variations in terms of cache capacity constraints and overlapping
cache coverage: (1) In [2] where the authors show that poly-
time solutions can be obtained without cache capacities for linear
storage cost and disjoint cache coverage, and (2) In [7] where
the authors prove hardness with cache capacity constraints but
without overlapping cache coverage.

4.1 Properties of the optimal solution
Our aim in this section is to characterize properties of the optimal
solution, to later employ these insights for constructing an approx-
imation algorithm. In particular, we will show that there always
exists an optimal solution to MIP-a such that all the caches either
store the content for all T slots or do not store it all, and each user
routes its requests only to one cache. In what follows, we denote
the optimal solution of MIP-a as (y∗,q∗).



THEOREM 4.2. For every instance of MIP-a, there exists an
optimal solution (y∗,q∗) with the following properties:

(A.1) q∗in ∈ {0, 1} ∀i ∈ [I], n ∈ [N ]. This also implies
that for a user i, q∗in = 1 for some n ∈ [N ] since∑
n q
∗
in = 1. In other words, a user requests content

from exactly one cache.
(A.2) y∗n ∈ {0, T} ∀n ∈ [N ], i.e., the caches either store the

content for all T slots or do not store it at all.
(A.3) For a user i, if there exists a cache n ∈ H(i) which

stores the content for T slots then q∗in = 1.

4.2 A greedy approximation algorithm
With the insights obtained from Theorem 4.2, we now develop
a simple, greedy Algorithm LIN-MUL that approximates MIP-a.
We will restrict our search to the solutions which have similar
properties as the properties of an optimal solution (y∗,q∗) from
Theorem 4.2. To begin with, we define a class of solutions which
has exactly the same properties as that of the optimal solution
from Theorem 4.2 except that the solution may not be optimal:

Definition 4.3. A tight solution (y,q) is a solution where
• qin ∈ {0, 1} ∀i ∈ [I], n ∈ [N ]. This also implies that for a

user i, qin = 1 for some n ∈ [N ] since
∑
n qin = 1. In other

words, a user requests content from exactly one cache.
• yn ∈ {0, T} ∀n ∈ [N ], i.e., the caches either store the content

for all T slots or do not store it at all.
• For a user i, if there exists a cache n ∈ H(i) which stores the

content for T slots then qin = 1.

Using Definition 4.3, we can re-state Theorem 4.2 as follows:

COROLLARY 4.4. For every instance of MIP-a, there exists a
tight optimal solution (y∗,q∗).

Note: Since we know that every instance of MIP-a has a tight
optimal solution, for the rest of this paper, we will explore
the space consisting of only tight solutions for the purpose
of developing candidate solutions. Thus we will assume that
Definition 4.3 holds for every solution (yl,ql) from here onwards.

Given (y,q), let J(y) denote the set of users who do not have
any cache connected with them that has stored the content in
(y,q). In other words J(y) = {i ∈ [I] : yn = 0, ∀n ∈ Hi}.
We also define F (y) as the set of caches that store the content in
a tight solution (y,q), i.e., F (y) = {n ∈ [N ] : yn = T}. The
cost of a tight solution (y,q) can then be expressed as

Lmul(y,q) = αT |F (y)|+DmulT

1−
∏

i∈J(y)
(1− pi)

 (13)

Luni(y,q) = αT |F (y)|+DmulT
∑

i∈J(y)
pi (14)

Below we describe our greedy Algorithm LIN-MUL which
iterates through tight solutions to find a heuristic solution to MIP-
a. LIN-MUL sequentially iterates over empty caches and in every
iteration it stores the content in a cache which provides the largest
one-shot cost reduction if it stores the content compared to when
it does not store the content. Note that since LIN-MUL only
searches through tight solutions, its final output is a tight solution.
Discussion: Although LIN-MUL and other heuristics we develop

Algorithm 1: LIN-MUL
Input: The cache network

1 Start with any tight solution with y = 0. Compute the cost
in Equation (13).

2 For every empty cache, compute the reduction in the total
cost by forming a tight solution assuming that the content is
going to be stored in that cache.

3 Find the cache that gives maximum cost reduction and check
if the cost reduction is positive. If yes, store content in that
cache for T slots. Associate all the users (who can get served
by this cache and are not associated with any other cache)
with this cache.

4 If no cache satisfies 3 then exit, or else go to step 2.
Output: User-cache association q and retentions y.

for MIP-a (and PRRO) explore only tight solutions which either
store the content in a cache for the full duration of T slots or do
not store it there at all, note that these heuristics and subsequent
performance bounds are derived taking into account retention-
aware objective.

We know that LIN-MUL is suboptimal since for D � α,
MIP-a has set-cover as its special case. For a specific example,
see Example 1 in [32]. However, in the performance evaluation
section, we show that LIN-MUL output stays close to the optimal
solution in simulations based on real-world data.

4.3 Bounding the performance of LIN-MUL for
multicast server mode

For any given MIP-a instance E (with multicast server mode),
we are interested in how well LIN-MUL performs. Specifically,
if (yl,ql) denotes the solution given by LIN-MUL, then we are
interested in bounding the ratio γ(E) as defined below:

γ(E) :=
L(yl,ql)

L(y∗,q∗)
(15)

Note that bounding γ(E) is not straightforward: When D is close
to α, the optimal solution is to not store the content in any of the
caches. When D � α, MIP-a is similar to set cover. In the next
section, we describe a way to transform E into another simplified
instance which enables us to bound γ(E).

Note: Since we are considering only tight solutions (with
optimal solution also being tight) without loss of generality, we
will assume that T = 1 for this section because T cancels out
from the ratio (See Equations 13 and 15).

4.3.1 Bounding γ(E). Our aim in the following discussion
is to bound γ(E) given a problem instance E. Towards this,
we will simplify E into another instance E1 while maintaining
γ(E1) = γ(E). Recall that we are considering only tight solu-
tions and T = 1 without loss of generality.

LEMMA 4.5. Every MIP-a instance E (with multicast server
mode) can be transformed into another instanceE1 with γ(E1) =
γ(E) with the following additional properties:



(a) If in E the demand of a user i is not locally satisfied in
either (y,q) or (y∗,q∗) then in E1, i is associated with
at most one cache randomly chosen from H(i) from E.

(b) If in E the demand of a user i gets locally satisfied in
(y,q) but not in (y∗,q∗) then in E1 user i is associated
with exactly one cache from H(i) from E, namely, the
cache through which LIN-MUL routes its demand.

(c) If in E the demand of a user i gets locally satisfied in
(y∗,q∗) but not in (y,q) then in E1 user i is associated
with exactly one cache fromH(i), namely, any randomly
chosen cache from H(i) from E such that it stores the
content in (y∗,q∗).

(d) If inE the demand of a user i gets locally satisfied in both
(y∗,q∗) and (y,q), then in E1 user i is associated with
at most two caches as follows: If the cache through which
LIN-MUL routes its requests also stores the content in
(y∗,q∗) then i is associated with only this single cache.
Otherwise it is associated with two caches, namely, the
cache through which LIN-MUL routes its requests and
any randomly chosen cache from H(i) from E such that
it stores the content in (y∗,q∗).

For further illustration as to how E1 looks like, please see
Figure 2 and its description. We now state the main theorem of
this section (where g(x) := 1

1− 1
x

).

THEOREM 4.6. For an instance E, define δ, ε ≥ 1 such that
δ := D

L(y∗,q∗) and ε := D
α|F (y∗)| . Let k = maxi{ki}. Then,

γ(E) ≤ min

{
δ, ε,

(
k + 1 +

1

|F (y∗)|
log g(δ)

log g(|F (y∗)|ε)

)}

Before we go to interpreting the theorem, we would like to
make an interesting observation. The third term in the above
theorem can be made much tighter as follows: Since the server
transmission mode is multicast, for the download cost, the proba-
bility that matters that at least one user requests the content in a
given slot. Thus if there are several users with same user-cache
association graph then these users can be aggregated into a single
user whose probability of requesting the content in a slot is equal
to the probability that at least one of the individual user of the
aggregated users requests the content. Let us divide the users
into equivalence classes where in an equivalence class every user
has the same user-cache association graph. We can replace each
equivalence class by a single aggregated user as described above.
Thus k in the bound in Theorem 4.6 can in fact be replaced by the
maximum number of equivalence classes the users of a cache can
fall into, which could be much smaller than maxi{ki}.

The proof of Theorem 4.6 can be found in [32]. We give a brief
intuitive interpretation of the result. First, if D is very close to α
then γ(E) will be small since the maximum cost of any solution is
D and minimum cost of any solution which stores the content in at
least one cache is α. On the other hand if D is substantially larger
than α then the solutions tend to look like a set cover (i.e., storing
the content in minimum number of caches to satisfy maximum
number of users) in which the greedy algorithm gives a ratio of
k. So let us assume that D is only fairly larger than α. For the
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Figure 2: As a consequence of Lemma 4.5, a given instance
E gets transformed to E1 which looks like above (For the ex-
tra notation, see the discussion after the proof of Lemma 4.5
in [32]). Users whose demands do not get satisfied in ei-
ther (y∗,q∗) or (y,q) in E look similar to z (Lemma 4.5(a)).
Users whose demands get satisfied only in (y,q) look simi-
lar to either w or z (Lemma 4.5(b)). Users whose demands
get satisfied only in (y∗,q∗) look similar to u (Lemma 4.5(c)).
Users whose demands get satisfied in both (y∗,q∗) and (y,q)
look similar to v or a (Lemma 4.5.(d).

following interpretation, we will assume that the network consists
of a fairly large number of caches.

Consider the scenario when δ is small and (y∗,q∗) is close to
D, e.g., this happens when the network is mostly comprised of a
large number of caches each having a small nearly-independent
user base. Here, there is high aggregate demand in a slot. In this
case, it is not beneficial for nearly any cache to store the content
(due to their small individual user base) and instead they rely on
multicast to satisfy high aggregate demand in each slot. This
holds for both (y∗,q∗) and (y,q), thus γ(E) tends to be small.

Now consider the scenario with a large number of caches hav-
ing sufficiently large and fairly non-overlapping user bases with
high demands. Now many caches store the content in the optimal
solution and α|F (y∗)| will be close to D. This implies small ε
and thus γ(E) will also be small in such a situation. Now consider
the scenario when the caches have fairly overlapping user bases
with high demands. In this case, a small number of caches will
end up storing the content in the optimal solution. At the end, if
the multicast download cost does not form a significant part of
the solution, LIN-MUL performs similar to applying the greedy
algorithm for set cover (i.e., trying to minimize the number of
caches storing content) thus γ(E) is close to k + 1 (see [32]for a
detailed explanation). However, if in this case multicast download
cost forms a significant portion of the solution then the perfor-
mance of the greedy algorithm could be limited by its attempt to
approximate the non-linear decreasing download cost by myopi-
cally selecting the caches. Since the function is non-linear, greedy
algorithms are not expected to perform well in this situation.



4.4 Unicast download
In the unicast server transmission mode, intuitively there is a
higher pressure on the system to minimize the download cost
even when D is close to α (unlike the case of multicast) since
the unicast download cost is additive with respect to the demands
which are not locally satisfied. We can form an equivalent greedy
algorithm of LIN-MUL with respect to the unicast objective in
Equation 14 and can also define γ(E). We can also show that
Lemma 4.5 holds. Furthermore,

LEMMA 4.7. For unicast server mode, starting from the in-
stance E1, we can construct another instance E2 such that Afree

and Anone are empty and γ(E) ≤ γ(E3).

THEOREM 4.8. For an instance E of MIP-a with unicast,
if k is the maximum number of users a cache can reach then
γ(E) ≤ k + 1.

5 CAPACITY CONSTRAINED CACHES
Recall that, Sections 4 and 4.4 assumed large capacity caches.
For capacity-constrained caches, the following Algorithm 2 is a
natural extension of LIN-MUL. Now we iterate on every pair of
(cache, content) such that the content is not stored in that cache.
In every step we select the pair that contributes to the maximum
reduction in the overall cost.

Algorithm 2: Cache-Fill: Heuristic for PRRO
Input: The cache network

1 Start with a tight solution with y = 0. Compute the cost in
Equation (5).

2 For every (cache, content) pair such that the content is not
already stored in the cache and the cache has spare capacity,
compute reduction in the total cost by forming a tight
solution assuming that the content is going to be stored in
that cache.

3 Selected the (cache, content) that gives maximum cost
reduction and check if the cost reduction is positive. If no
cache satisfies 3 then exit.

4 Otherwise store the selected content in the selected cache for
T slots and decrement its available capacity. Identify all the
users whose requests for the selected content can now be
routed through the selected cache (and such that they do not
already route the requests for this content through some other
cache). Route the requests for all such users for the selected
content through the selected cache. Go to step 2.
Output: User-cache association q and retentions y.

6 PERFORMANCE EVALUATION
In this section, we numerically evaluate the performance of our
algorithms on a real dataset [33] obtained from a sporting event
with thousand attendees covered by a Mobile Base Station (MBS)
and several Small Cell Base Station (SBSs).
Evaluation setup: Our evaluations are based on the dataset from
the Superbowl event, held at the New Orleans Superdome, in 2013.
The stadium consists of a Macro Base Station (MBS) providing

SBS

Figure 3: Stadium consisting of 14 SBSs providing overlap-
ping coverage to users. The requests that result in a cache
miss at the SBS are served by an MBS (omitted here).
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Figure 4: Impact of increasing Dmul from 15 to 20.

cellular coverage to the viewers (or users) along with N = 14
other SBSs. See Figure 3 for the stadium layout. We would
like to emphasize that, as with all real world deployments, the
coverage areas of SBSs may overlap as shown in the figure; this is
in contrast with [7] where it was explicitly assumed that the cache
coverage areas do not overlap.

Over fifty thousand viewers attended the event generating three
thousand requests for a thousand distinct contents over the span
of four hours. This gives us I = 50, 000, M = 1000. To model
the content arrival process, we spread the 30,000 file requests over
1,000 files using a ZipF popularity distribution with an exponent
of βm = 1.2 [7]. Moreover, we further spread the requests
(for various contents) over users by choosing a ZipF popularity
exponent βu = 0.9. Thus, we obtain the probability of user i
requesting content m, i.e. pmi, for each {user, content}.

We divide the four hour time duration – i.e. 240 minutes – in 16
frames of duration T = 15 minutes each, with each frame having
a slot of duration dT = 1 minute. We also vary T, dT in our
evaluation, but unless otherwise mentioned we consider T = 15
and dT = 1. We assume that users are distributed uniformly in the
annular region in the stadium shown in Figure 3. A user associates
to a single cache if they lie in the non-overlapping SBS coverage
region, or two caches if they lie in the overlapping coverage region



(see Figure 3). We induce mobility in users by assuming that 5
% of users (i.e. 2500 out of 50000 users) change their positions
every frame. The mobile users are chosen independently across
frames. The changed position is sampled uniformly at random
from the list of SBSs that the user is not associated with currently.
We then randomly associate the user with either the chosen SBS or
a pair of SBSs consisting of the chosen SBS and the one adjacent
to it. (Note that SBS 1 is adjacent to SBS 14, in our stadium).
A random association in the mobility model can emulate user
movements during the game, in the form of snack or restroom
breaks, which can be a few SBSs away.

For evaluations, we study the problem across content caching
schemes, content routing policies, the modes of content transmis-
sion, and draw comparisons across various policies in terms of
how they differ across these regimes. Although we started with re-
tention time taking integral values in [0, T ], our caching decisions
with linear storage cost become binary (see Theorem 4.2). Thus,
we only need to decide whether to cache a content for duration T
or to not cache it at all. We refer to the routing as greedy if all the
requests from a user are routed to a single cache containing the
content. If no cache has the content, then the requests are routed
arbitrarily to any cache the user is associated with. We report the
performance with multicast mode of transmission (MUL) here;
please see the unicast (UNI) case in [32].

6.1 Algorithms on a large cache
In this section, all the caches have a large capacity. We study the
performance trade-offs for the following policies:

(1) Retention-Routing Caching (RRC): The joint caching-routing
decisions are made by solving MIP-a at the beginning of every
frame by using LIN-MUL (see Algorithm 1) for the multicast
case, and a similar algorithm LIN-UNI for the unicast case.

(2) Routing-only Caching (R-only): While RRC solved the joint
caching-routing optimization in the beginning of every frame,
here caching decision is only made during the first frame. In
all the subsequent frames, even though some of the users have
moved, we only compute the optimal routing (by forming a
tight solution) but we do not change the storage. This case
is useful for checking how much a small amount of mobility
can impact the cost of the solutions on a short term basis.

(3) Optimal Caching (OPT): Here we compute the optimal solu-
tion by brute force. We exploit the properties of the optimal
solution proved in Theorem 4.2, by virtue of which we only
need to consider 2N tight solutions for every possibility of
content storage assignment to the N caches.

We now study the impact of various parameters used in our eval-
uations. We first increase D w.r.t. α and observe the following:
From Figure 4, the solutions computed by LIN-MUL (i.e., RRC-
MUL) perform nearly as well as the optimal solution. Also, as D
increases, the cost of the optimal solution as well as the solution
computed by LIN-MUL (i.e., RRC-MUL) increases. This is natu-
ral to expect as increasing D implies higher download cost for the
user demands which are not locally satisfied. Also, the solutions
computed by re-computing only the routing (R-ONLY-MUL) nat-
urally perform worse than the RRC-MUL. Similar conclusions
apply for the unicast case (see [32]).
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Figure 5: Impact of increasing frame length to T = 20 min
and slot length to dT = 2 min for the multicast case.

To study the impact of the length of frame duration on the cost,
we consider a frame of duration T = 20 min with slot duration
dT = 2 min, thus having a total of 12 frames. We plot the results
in Figure 5 for the multicast case to contrast the results against
those obtained with T = 15 min and dT = 1 min from Figures 4.
A similar figure contrasting the results for unicast can be found
in [32]. We observe that a larger frame duration reduces the cost,
which is natural since users are moving fewer number of times
during the duration of interest. Binning user movements into
large frame durations could be lossy as it may fail to capture
the real user movements which can potentially occur more often.
In general, the problem of choosing the optimal values of T is
a trade-off between computation and performance: Smaller T
would model user movement very well with high granularity
albeit at the cost of high computation overhead per frame and vice
versa. A large dT indicates an increased delay tolerance in users
(for getting the requested content served) whereas a small value
of dT guarantees a fast content delivery to users. Thus, choosing
an appropriate value of dT requires domain knowledge about user
and wireless network characteristics.

We vary the user demand spreading ZipF coefficient, βu, from
0.1 to 3.0. A higher βu models the skewness in user-demands, i.e.,
only a few users request more content compared to other users,
whereas βu = 0 means that content demands are distributed
uniformly. We observe similar cost trends across the policies as
before (for both multicast and unicast) for every βu with the differ-
ence that as βu increases the cost incurred for each policy reduces.
This is reasonable since with a high skewness, transmitting and
storing only a few files can potentially satisfy demands from a
large user pool.

6.2 Algorithms on a finite cache
We consider the following policies for cache-capacitated variant:

(1) Greedy heuristic for PRRO: We consider the heuristic de-
scribed in Algorithm 2 to assign content to caches, and refer
to it as PRRO-heuristic.

(2) Greedy Multicast Aware Caching (GMAC): GMAC is a nat-
ural variant of PRRO in that the users are associated to a
single cache instead of being associated to two (or multiple)
caches. This policy is executed in the same way as PRRO,
except that in GMAC the decision of routing and storage is
not jointly done – instead, we randomly associate users with
one of the caches they can associate with and subsequently
compute which content every cache should store (subject to
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Figure 6: Impact of increasing B relative to M .

the capacity) based on how frequently a content is requested
by the users routing via the cache. Many prior works, such as
[2, 7] use this model.

Benefit of multiple paths for routing. We evaluate the cost
of our solutions using the greedy heuristics for PRRO and GMAC
and observe that an increase in the cache capacity makes multipath
routing significantly more advantageous than single-path GMAC.
For example, from our experiments (see Figure 6), we observed
that when B = 20% of the total number of contents (i.e. B =
200 and M = 1000) we get only 7% cost savings with PRRO
heuristic. However, for B = 50% of M (i.e., 500 contents), cost
savings increased to 22%! This finding reinforces the benefits of
multipath caching for large caches.

7 CONCLUSION
We considered the problem of proactive retention aware caching
on a heterogeneous network where requests from mobile users
can be routed to possibly multiple caches. Our goal is to design a
caching policy that minimizes the sum of costs of content storage
and content downloads. We showed that this problem is NP-Hard
even when the caches have a large capacity. We developed a sim-
ple greedy algorithm and assessed its efficiency for large caches
by means of investigating a core family of solutions which we call
tight solutions. We showed that each instance can be converted
into a sparse instance which upper bounds the performance of
the original instance. Using this result, we derived upper bounds
on the performance of the greedy algorithm which worked well
over multiple regimes. Finally, we propose a heuristic for the
capacitated cache case. Systematic evaluations with real data set
demonstrate the effectiveness of our approach.
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[11] Ejder Baştuğ et al. Big Data Meets Telcos: A Proactive Caching Perspective.
2015.

[12] John Tadrous, Atilla Eryilmaz, and Hesham El Gamal. Proactive Resource
Allocation: Harnessing the Diversity and Multicast Gains. CoRR, 2011.

[13] U. Niesen and M. A. Maddah-Ali. Coded Caching for Delay-Sensitive Content.
In 2015 IEEE International Conference on Communications, ICC, 2015.

[14] B. Zhou, Y. Cui, and M. Tao. Optimal Dynamic Multicast Scheduling for
Cache-Enabled Content-Centric Wireless Networks. In 2015 IEEE Interna-
tional Symposium on Information Theory (ISIT), 2015.

[15] J. Tadrous, A. Eryilmaz, and H. El Gamal. Joint Smart Pricing and Proactive
Content Caching for Mobile Services. IEEE/ACM Transactions on Networking,
2016.

[16] J. Tadrous and A. Eryilmaz. On Optimal Proactive Caching for Mobile Net-
works With Demand Uncertainties. IEEE/ACM Transactions on Networking,
2016.

[17] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive Content Download
and User Demand Shaping for Data Networks. IEEE/ACM Transactions on
Networking, 2014.

[18] N. Choungmo Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel.
On the Performance of General Cache Networks. In ACM VALUETOOLS,
2014.
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