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Abstract—Motivated by the need of solving machine learning
problems over distributed datasets, we explore the use of coreset
to reduce the communication overhead. Coreset is a summary
of the original dataset in the form of a small weighted set in
the same sample space. Compared to other data summaries,
coreset has the advantage that it can be used as a proxy of the
original dataset, potentially for different applications. However,
existing coreset construction algorithms are each tailor-made for
a specific machine learning problem. Thus, to solve different
machine learning problems, one has to collect coresets of different
types, defeating the purpose of saving communication overhead.
We resolve this dilemma by developing coreset construction
algorithms based on k-means/median clustering, that give a
guaranteed approximation for a broad range of machine learning
problems with sufficiently continuous cost functions. Through
evaluations on diverse datasets and machine learning problems,
we verify the robust performance of the proposed algorithms.

Index Terms—Coreset, distributed machine learning, dis-
tributed k-means, distributed k-median.

I. INTRODUCTION

The recent decade has observed a dramatic growth in
distributed data generation, powered by various Internet of
Things (IoT) applications and social networking applications.
It has been predicted that the rate of such distributed data
generation will exceed the current Internet capacity in the
near future [2]. This phenomenon presents both opportunities
and challenges for machine learning. On the one hand, the
real-time and location-based nature of the distributed data
enables novel applications based on machine learning, such
as augmented reality and cognitive assistance. On the other
hand, the distributed nature of the data sources, coupled
with the difficulty of collecting the data to a central location
due to network bandwidth, energy, and/or privacy constraints,
calls for a fundamentally different way of applying machine
learning that is suitable for distributed datasets.

Broadly speaking, three approaches have been proposed for
distributed machine learning: sharing the output, sharing the
model, and sharing the data. In the first approach [3], data
sources independently compute and share outputs of local
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Figure 1. Application scenario (ML i: machine learning model i).

models, which are then aggregated into a global output (e.g.,
by majority vote). In the second approach [4], [5], [6], data
sources share models learned on local data, which are then
aggregated into a global model (e.g., by taking weighted
average). In the third approach [7], [8], [9], data sources share
summaries of their local data, which are then used to compute
a global model. Each approach has its pros and cons: the first
approach usually has the smallest communication overhead,
but only supports one query; the second approach builds a
global model that can be used for multiple queries, but only
supports one model; the third approach may incur a larger
communication overhead, but can potentially support multiple
models, hence amortizing the overhead.

In this work, we take the third approach, with a particular
interest in supporting diverse machine learning models. Fig-
ure 1 illustrates a typical application scenario in the context
of mobile edge computing [5], where data sources report local
summaries to an edge server, which then computes various
models from these summaries.

In particular, we consider data summarization using coreset
[10]. A coreset is a small weighted dataset as a proxy of
the original dataset with provable approximation guarantees.
Compared to other data summaries (e.g., sketches), a coreset
preserves the sample space of the original dataset, and is hence
more convenient to use, e.g., a classifier learned from the
coreset can classify a new data point, the principle components
learned from the coreset can be used for feature selection,
both in the original sample space. Algorithms have been
developed to construct coresets for various machine learning
problems (see Section II-B), such that the model learned on the
coreset approximates the model learned on the original dataset.
However, existing coreset construction algorithms are tailor-
made for specific machine learning problems, which means
that we have to collect different coresets to solve different
problems. The question we raise is: Is there a coreset that is
good for a broad set of machine learning problems?

In this work, we answer the above question affirmatively
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by proving that a particular type of coreset, generated by k-
means/median clustering, can give a good approximation for
a broad set of machine learning problems.

A. Related Work

Distributed learning is considered one of the most promising
lines of research for large-scale learning [3], particularly for
naturally distributed data. The main challenge in distributed
learning is to incorporate information from each distributed
dataset, without the high overhead of collecting all the data.

Traditionally, this is achieved by collecting the outputs
of learned models or the models themselves [11]. The first
approach (i.e., collecting outputs) is more popular among
earlier works. For example, [12] proposed various heuristic
decision rules (e.g., majority vote) to combine outputs of
local classifiers, and [13] proposed to train a global classifier
using labeled outputs of local classifiers. The solution in [13]
was modified in [14] to improve efficiency for large-scale
distributed data, and extended in [11] to include various ways
of composing the global training set. The idea was later used to
build a descriptive model from distributed data [15]. To further
improve the accuracy, a distributed-pasting-votes framework
was proposed in [16] to learn sets of classifiers (ensembles).

The second approach (i.e., collecting models) is more useful
when we want to learn not just one answer, but the rule to give
answers. For example, the distributed boosting framework in
[17] requires nodes to share locally trained classifiers, and the
federated learning framework in [4], [18] requires nodes to
report locally learned models to a single node, which then
aggregates the models and broadcasts the result to others.

Meanwhile, research on data summarization has inspired
a third approach: collecting data summaries. Data summaries,
e.g., coresets, sketches, projections [19], [20], [21], are derived
datasets that are much smaller than the original dataset, and
can hence be transferred to a central location with a low
communication overhead. This approach has been adopted
in recent works, e.g., [7], [8], [9], [22]. We are particularly
interested in a specific type of data summary, coreset, as it can
be used as a proxy of the original dataset. See Section II-B
for a detailed review of related works on coreset.

B. Summary of Contributions

We are the first to explore using coreset to support diverse
machine learning problems on distributed data. Specifically:

1) We empirically show that although existing coreset con-
struction algorithms are designed for specific machine
learning problems, an algorithm based on k-means clus-
tering yields good performance for different problems.

2) We harden the above observation by proving that the
optimal k-clustering (including k-means/median) gives
a coreset that provides a guaranteed approximation
for any machine learning problem with a sufficiently
continuous cost function (Theorem III.1). We
further prove that the same holds for the coreset
given by a suboptimal k-clustering algorithm, as
long as it satisfies certain assumptions (Theorem III.2).

3) We adapt an existing algorithm designed to support
distributed k-clustering to construct a robust coreset
over distributed data with a very low communication
overhead.

4) Our evaluations on diverse machine learning problems
and datasets verify that k-clustering (especially
k-means) and its approximations provide coresets good
for learning a variety of machine learning models.

Roadmap. Section II reviews the background on coreset.
Section III presents our main theoretical results on the uni-
versal performance guarantee of k-clustering-based coreset.
Section IV presents our distributed coreset construction algo-
rithm. Section V evaluates the proposed algorithm. Section VI
concludes the paper.

II. BACKGROUND

A. Coreset and Machine Learning

Many machine learning problems can be cast as a cost (or
loss) minimization problem. Given a dataset in d-dimensional
space P � Rd, a generic machine learning problem over
P can be characterized by a solution space X , a per-point
cost function cost(p; x) (p 2 P , x 2 X ), and an overall cost
function cost(P; x) (x 2 X ) that aggregates the per-point costs
over P . For generality, we consider P to be a weighted set,
where each p 2 P has weight wp. Let wmin := minp∈P wp
denote the minimum weight. For an unweighted dataset, we
have wp � 1. The machine learning problem is then to solve

x∗ = arg min
x∈X

cost(P; x) (1)

for the optimal model parameter x∗.
Example: Let dist(p; x) := kp � xk2 denote the Euclidean

distance between points p and x. The minimum enclosing
ball (MEB) problem [10] aims at minimizing the maximum
distance between any data point and a center, i.e., cost(p; x) =
dist(p; x), cost(P; x) = maxp∈P cost(p; x), and X = Rd. The
k-means clustering problem aims at minimizing the weighted
sum of the squared distance between each data point and
the nearest center in a set of k centers, i.e., cost(p; x) =
minxi∈x dist(p; xi)2, cost(P; x) =

P
p∈P wpcost(p; x), and

X = fx := fxigki=1 : xi 2 Rdg.
Typically, the overall cost is defined as: (i) sum cost,

i.e., cost(P; x) =
P
p∈P wpcost(p; x) (e.g., k-means), or (ii)

maximum cost, i.e., cost(P; x) = maxp∈P cost(p; x) (e.g.,
MEB).

A coreset is a small weighted dataset in the same space as
the original dataset that approximates the original dataset in
terms of cost, formally defined below.

Definition II.1 ([23]). A weighted set S � Rd with weights uq
(q 2 S) is an �-coreset for P with respect to (w.r.t.) cost(P; x)
(x 2 X ) if 8x 2 X ,

(1� �)cost(P; x) � cost(S; x) � (1 + �)cost(P; x); (2)

where cost(S; x) is defined in the same way as cost(P; x),
i.e., cost(S; x) =

P
q∈S uqcost(q; x) for sum cost, and

cost(S; x) = maxq∈S cost(q; x) for maximum cost.
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From Definition II.1, it is clear that the quality of a coreset
depends on the cost function it needs to approximate, and
hence the machine learning problem it supports.

B. Coreset Construction Algorithms

Because of the dependence on the cost function (Defini-
tion II.1), existing coreset construction algorithms are tailor-
made for specific machine learning problems. Here we briefly
summarize common approaches for coreset construction and
representative algorithms, and refer to [19], [20] for detailed
surveys.

1) Farthest point algorithms: Originally proposed for MEB
[10], [24], these algorithms iteratively add to the coreset a
point far enough or farthest from the current center, and stop
when the enclosing ball of the coreset, expanded by 1 + �,
includes all data points. This coreset has been used to compute
�-approximation to several clustering problems, including k-
center clustering, 1-cylinder clustering, and k-flat clustering
[10], [25]. As support vector machine (SVM) training can be
formulated as MEB problems [26], similar algorithms have
been used to support SVM [26], [27]. Variations have been
used for dimensionality reduction [28] and probabilistic MEB
[29]. These algorithms are considered as variations of the
Frank-Wolfe algorithm [30].

2) Random sampling algorithms: These algorithms con-
struct a coreset by sampling from the original dataset. The
basic version, uniform sampling, usually requires a large core-
set size to achieve a good approximation. Advanced versions
use sensitivity sampling [31], where each data point is sampled
with a probability proportional to its contribution to the overall
cost. Proposed for numerical integration [31], the idea was
extended into a framework supporting projective clustering
problems that include k-median/means and principle compo-
nent analysis (PCA) as special cases [23]. The framework
has been used to generate coresets for other problems, e.g.,
dictionary learning [32] and dependency networks [33] , and
is further generalized in [34]. Although the framework can in-
stantiate algorithms for different machine learning problems by
plugging in different cost functions, the resulting coreset only
guarantees approximation for the specific problem defined by
the plugged-in cost function.

3) Geometric decomposition algorithms: These algorithms
divide the sample space or input dataset into partitions, and
then selecting points to represent each partition. Specific
instances have been developed for weighted facility problems
[35], Euclidean graph problems [36], k-means/median [9],
[37].

While there are a few works not fully covered by the
above approaches, e.g., SVD-based algorithms in [38], [39],
the above represents the key approaches used by existing
coreset construction algorithms. Using a generic merge-and-
reduce approach in [40], all these algorithms can be used
to construct coresets of distributed datasets. Of course, the
resulting coresets are still tailor-made for specific problems.
In contrast, we seek coreset construction algorithms which
can construct coresets that simultaneously support multiple
machine learning problems.
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Figure 2. Comparison of coreset construction algorithms (coreset size: 8).

III. ROBUST CORESET CONSTRUCTION

Our main result is that selecting representative points using
clustering techniques yields a coreset that achieves a good
approximation for a broad set of machine learning problems.
We will start with a centralized setting in this section, where
the raw data reside at a single data source (that needs to
compute and report the coreset to a server as illustrated in
Figure 1), and leave the distributed setting where the raw data
are distributed across multiple data sources to Section IV.

A. Motivating Experiment

We start with an initial experiment that compares selected
algorithms representing the three approaches in Section II-B:
(i) the algorithm in [24] (‘farthest point’) representing farthest
point algorithms, (ii) the framework in [23] instantiated for
k-means (‘nonuniform sampling’) and the uniform sampling
algorithm (‘uniform sampling’), both representing random
sampling algorithms, and (iii) the algorithm in [9] (‘decom-
position’) representing geometric decomposition algorithms.
As the algorithm in [24] was designed for MEB and the
algorithms in [23], [9] were designed for k-means, we evaluate
both MEB and k-means.

The evaluation is based on a synthetic dataset containing
4000 points uniformly distributed in [1; 50]3; evaluations on
real datasets will be presented later (Section V). All the
algorithms are tuned to have the same average coreset size.
We evaluate the performance of a coreset S by the normalized
cost, defined as cost(P; xS)=cost(P; x∗), where x∗ is the
model learned from the original dataset P , and xS is the
model learned from the coreset. The smaller the normalized
cost, the better the performance. As these coreset construction
algorithms are randomized, we plot the CDF of the normalized
costs computed over 100 Monte Carlo runs in Figure 2.

Not surprisingly, a coreset construction algorithm designed
for one problem can perform poorly for another, e.g., the
farthest point algorithm [24] designed for MEB performs
poorly for k-means. Interestingly, the decomposition algorithm
[9], although designed for k-means, also performs well for
MEB. This observation triggers a question: Is the superior
performance of the decomposition algorithm [9] just a coinci-
dence, or is there something fundamental?

B. The k-clustering Problem

At the core, the decomposition algorithm in [9] constructs
a k-point coreset by partitioning the dataset into k clusters
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using k-means clustering, and then using the cluster centers
as the coreset points. To analyze its performance in supporting
a general machine learning problem, we introduce a few
definitions.

Given a weighted dataset P � Rd with weight wp (p 2 P ),
and a set Q = fq1; :::; qkg of k � 1 points in Rd (referred to
as centers), the cost of clustering P into Q is defined as

c(P;Q) =
X
p∈P

wp(min
q∈Q

dist(p; q))z; (3)

for a constant z > 0. The k-clustering problem is to find
the set of k centers that minimizes (3). For z = 1, this
is the k-median problem. For z = 2, this is the k-means
problem. We will use the solution to the k-clustering problem
to construct coresets, based on which we can solve general
machine learning problems. We use c(P; �) to denote the cost
function of this auxiliary problem and cost(P; �) to denote
the cost function of a general machine learning problem of
interest.

We denote by �(P ) the optimal center for 1-clustering of
P . It is known that for z = 2, �(P ) is the sample mean:

�(P ) =
1P

p∈P wp

X
p∈P

wp � p: (4)

We denote by opt(P; k) the optimal cost for k-clustering
of P . It is known that k-means and k-median are both NP-
hard problems [41], [42], for which efficient heuristics exist
(e.g., Lloyd’s algorithm and variations) [43]. Let approx(P; k)
denote the cost of a generic k-clustering algorithm, which
always satisfies approx(P; k) � opt(P; k).

Each set of k centers Q = fqigki=1 induces a partition of
P into fP1; : : : ; Pkg, where Pi is the subset of points in P
whose closest center in Q is qi (ties broken arbitrarily). For
ease of presentation, we use1 fPigi∈[k] to denote the partition
induced by the optimal k-clustering, and f ePigi∈[k] to denote
the partition induced by a suboptimal k-clustering.

C. Coreset by Optimal k-clustering

We will show that the superior performance of the algorithm
in [9] observed in Section III-A is not a coincidence; instead,
it is a fundamental property of any coreset computed by k-
clustering, as long as the cost function of the machine learning
problem satisfies certain continuity conditions.

Sketch of analysis: At a high level, our analysis is based on
the following observations:

1) If doubling the number of centers only reduces the
optimal k-clustering cost by a little, then using two
centers instead of one in any cluster gives little reduction
to its clustering cost (Lemma III.1).

2) If selecting two centers in a cluster Pi gives little
reduction to its clustering cost, then all the points in
Pi must be close to its center �(Pi) (Lemma III.2), as
otherwise selecting an outlier as the second center would
have reduced the cost substantially.

1Throughout the paper, for k 2 Z+ , [k] := f 1, . . . , kg.

3) If each data point is represented by a coreset point with
a similar per-point cost, then the coreset gives a good
approximation of the overall cost (Lemmas III.3 and
III.4).

Therefore, for any machine learning problem with a suffi-
ciently continuous cost function, if the condition in item (1)
is satisfied, then the per-point cost of each k-clustering center
will closely approximate the per-point costs of all the points
in its cluster, and hence the set of k-clustering centers will
give a good coreset (Theorem III.1).

Complete analysis: We now present the precise statements,
supported by proofs in Appendix A.

Lemma III.1. For any �′ > 0, if opt(P; k)� opt(P; 2k) � �′,
then opt(Pi; 1)� opt(Pi; 2) � �′ (8i 2 [k]), where fPigki=1 is
the partition of P generated by the optimal k-clustering.

Lemma III.2. If opt(Pi; 1) � opt(Pi; 2) � �′, then
dist(p; �(Pi)) � ( �0

wmin
)

1
z , 8p 2 Pi.

Lemma III.3. For any machine learning problem with cost
function cost(P; x) =

P
p∈P wpcost(p; x), if 9 a partition

fPigki=1 of P such that 8x 2 X , i 2 [k], and p 2 Pi,

(1� �)cost(p; x) � cost(�(Pi); x) � (1 + �)cost(p; x); (5)

then S = f�(Pi)gki=1 with weight u�(Pi) =
P
p∈Pi

wp is an
�-coreset for P w.r.t. cost(P; x).

Lemma III.4. For any machine learning problem with cost
function cost(P; x) = maxp∈P cost(p; x), if 9 a partition
fPigki=1 of P such that (5) holds for any x 2 X , i 2 [k],
and p 2 Pi, then S = f�(Pi)gki=1 (with arbitrary weights) is
an �-coreset for P w.r.t. cost(P; x).

We now prove the main theorem based on
Lemmas III.1–III.4.

Theorem III.1. If opt(P; k) � opt(P; 2k) � wmin( �� )z , then
the optimal k-clustering of P gives an �-coreset for P w.r.t.
both the sum cost and the maximum cost for any per-point
cost function satisfying (i) cost(p; x) � 1, and (ii) cost(p; x)
is �-Lipschitz-continuous in p, 8x 2 X .

Proof. By Lemma III.1, opt(P; k) � opt(P; 2k) � �′ implies
opt(Pi; 1) � opt(Pi; 2) � �′, 8 cluster Pi generated by the
optimal k-clustering. By Lemma III.2, this in turn implies that
dist(p; �(Pi)) � ( �0

wmin
)

1
z , 8p 2 Pi. Because cost(p; x) is �-

Lipschitz-continuous in p for all x 2 X , we have

j cost(p; x)� cost(�(Pi); x) j� �(
�′

wmin
)

1
z ;8x 2 X ; p 2 Pi:

(6)

Moreover, as cost(p; x) � 1,

j cost(p; x)� cost(�(Pi); x) j
cost(p; x)

� �(
�′

wmin
)

1
z = �

for �′ = wmin( �� )z . By Lemma III.3, k-clustering gives an �-
coreset for P w.r.t. the sum cost; by Lemma III.4, k-clustering
gives an �-coreset for P w.r.t. the maximum cost.

Often in practice, the coreset size must satisfy some upper
bound specified by the maximum communication overhead. In
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this case, we can rephrase Theorem III.1 to characterize the
quality of approximation as a function of the coreset size.

Corollary III.1.1. Given a maximum coreset size k 2 Z+

(positive integers), for any cost function satisfying the con-
ditions in Theorem III.1, the optimal k-clustering gives an
�-coreset for P w.r.t. this cost function, where

� = �

�
opt(P; k)� opt(P; 2k)

wmin

� 1
z

: (7)

Proof. This is a direct implication of Theorem III.1, as setting
� by (7) satisfies the condition in Theorem III.1.

Remark: Condition (i) in Theorem III.1 is easily satisfied
by any machine learning problem with nonnegative per-point
costs, as we can add ‘+1’ to the cost function without
changing the optimal solution. Even without this condition, a
similar proof will show that the coreset S given by k-clustering
approximates the original dataset P in that jcost(P; x) �
cost(S; x)j � e� (8x 2 X ), where e� = �

P
p∈P wp for the

sum cost, and e� = � for the maximum cost.
Condition (ii) is satisfied by many machine learning prob-

lems with distance-based cost functions. For example, for
MEB, cost(p; x) = dist(p; x), where x 2 Rd denotes the center
of the enclosing ball. For any data points p; p′ 2 Rd, by the
triangle inequality, we have:

jdist(p; x)� dist(p′; x)j � dist(p; p′): (8)

Hence, its cost function is 1-Lipschitz-continuous (i.e., � = 1).
See Appendix B for more examples. In Section V, we will
stress-test our coreset when this condition is violated.

From the proof of Theorem III.1, it is easy to see that the
theorem holds as long as the distance between each data point
and its nearest k-clustering center is bounded by �=�, i.e.,
dist(p; �(Pi)) � �=� for all i 2 [k] and p 2 Pi. This implies
that Corollary III.1.1 actually holds for

� = �

�
max
i∈[k]

max
p∈Pi

dist(p; �(Pi))

�
; (9)

which can be much smaller than (7) for large datasets.

D. Coreset by Suboptimal k-clustering

While Theorem III.1 and Corollary III.1.1 suggest that the
optimal k-clustering gives a good coreset, the k-clustering
problem is NP-hard [41], [42]. The question is whether similar
performance guarantee holds for the coreset computed by an
efficient but suboptimal k-clustering algorithm. To this end, we
introduce a few assumptions on the k-clustering algorithm:

Assumption 1 (local optimality): Given the partition
f ePigki=1 generated by the algorithm, the center it selects in
each ePi is �( ePi), i.e., the optimal 1-clustering center for ePi.

Assumption 2 (self-consistency): For any P and any k � 1,
the cost of the algorithm satisfies

approx(P; 2k) �
kX
i=1

approx( ePi; 2): (10)

Assumption 3 (greedy dominance): For any P , the 2-
clustering cost of the algorithm satisfies

approx(P; 2) � c(P; f�(P ); p∗g); (11)

where c(P;Q) is defined in (3), and p∗ := arg maxp∈P wp �
dist(p; �(P ))z is the point with the highest 1-clustering cost.

These are mild assumptions that should be satisfied or
approximately satisfied by any good k-clustering algorithm.
Assumption 1 is easy to satisfy, as computing the 1-mean
is easy (i.e., sample mean), and there exists an algorithm
[44] that can compute the 1-median to arbitrary precision
in nearly linear time. Assumption 2 means that applying the
algorithm for 2k-clustering of P should perform no worse
than first using the algorithm to partition P into k clusters,
and then computing 2-clustering of each cluster. Assumption 3
means that for k = 2, the algorithm should perform no
worse than a greedy heuristic that starts with the 1-clustering
center, and then adds the point with the highest clustering
cost as the second center. We will discuss how to ensure these
assumptions for the proposed algorithm in Section III-E.

We show that for any k-clustering algorithm satisfying
these assumptions, statements analogous to Lemma III.1 and
Lemma III.2 can be made (proofs in Appendix A). Let f ePigki=1

denote the partition of P generated by the k-clustering algo-
rithm.

Lemma III.5. For any �′ > 0, if approx(P; k)�approx(P; 2k)
� �′, then approx( ePi; 1)� approx( ePi; 2) � �′ for any i 2 [k].

Lemma III.6. If approx( ePi; 1) � approx( ePi; 2) � �′, then
dist(p; �( ePi)) � ( �0

wmin
)

1
z , 8p 2 ePi.

Theorem III.2. If approx(P; k)�approx(P; 2k) � wmin( �� )z ,
where approx(P; k) is the cost of a (possibly suboptimal)
k-clustering algorithm satisfying Assumptions 1–3, then the
centers computed by the algorithm for k-clustering of P
give an �-coreset for P w.r.t. both the sum cost and the
maximum cost for any per-point cost function satisfying (i–
ii) in Theorem III.1.

Proof. The proof follows the same steps as that of Theo-
rem III.1, except that Lemma III.1 is replaced by Lemma III.5,
and Lemma III.2 is replaced by Lemma III.6. Note that Lem-
mas III.3 and III.4 hold for any partition of P , which in this
case is f ePigki=1 generated by the k-clustering algorithm.

Similar to Corollary III.1.1, we can rephrase Theorem III.2
to characterize the quality of a coreset of a specified size.

Corollary III.2.1. Given a maximum coreset size k 2 Z+, for
any cost function satisfying the conditions in Theorem III.1
and any k-clustering algorithm satisfying Assumptions 1–3,
the centers computed by the algorithm for k-clustering of P
give an �-coreset for P w.r.t. the given cost function, where

� = �

�
approx(P; k)� approx(P; 2k)

wmin

� 1
z

: (12)

E. Coreset Construction Algorithm

Based on Theorem III.2, we propose a centralized k-
clustering-based coreset construction algorithm, called Robust
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Algorithm 1: Robust Coreset Construction (P; �; �)

input : A weighted set P with minimum weight
wmin, approximation error � > 0, Lipschitz
constant �

output: An �-coreset S for P w.r.t. a cost function
satisfying Theorem III.2

1 foreach k = 1; : : : ; jP j do
2 if approx(P; k)� approx(P; 2k) � wmin( �� )z then
3 break;

4 (f�( ePi)gki=1; f ePigki=1) k-clustering(P; k);
5 S  f�( ePi)gki=1, where �( ePi) has weight

P
p∈ ePi

wp;
6 return S;

Coreset Construction (RCC) (Algorithm 1), which uses a k-
clustering algorithm as subroutine in lines 2 and 4. If the
coreset size k is predetermined, we can directly start from
line 4. The constant z = 1 if the adopted clustering algorithm
is for k-median, or z = 2 if it is for k-means.

The k-clustering subroutine: Algorithm 1 can use any k-
clustering algorithm as subroutine, although our performance
guarantee holds only if the algorithm satisfies Assumptions 1–
3. We note that these assumptions are easy to satisfy if
z = 2 . Consider the standard k-means algorithm (i.e., Lloyd’s
algorithm), which iteratively assigns each point to the nearest
center and updates the centers to the means of the clusters.
Clearly, this algorithm satisfies Assumption 1. Moreover, with
the following initialization, it also satisfies Assumptions 2 and
3. For (2k)-clustering of P :

1) if k = 1, then use the mean �(P ) and the point p∗ with
the highest clustering cost as defined in (11) as the initial
centers, which helps to satisfy Assumption 3;

2) if k > 1, then first compute k-clustering of P , and then
compute 2-clustering of each of the k clusters (both by
calling the same algorithm recursively) ; finally, use the
union of the 2-clustering centers as the initial centers,
which helps to satisfy Assumption 2.

Any odd number of initial centers are chosen randomly. Since
iterations can only reduce the cost, Lloyd’s algorithm with this
initialization satisfies Assumptions 1–3.

In theory, the above initialization plus a Lloyd-style algo-
rithm can satisfy Assumptions 1–3 for an arbitrary z > 0,
given a subroutine to compute the optimal 1-clustering center
�(P ). For z = 1, there is an algorithm to compute �(P ) to
an arbitrary precision in nearly linear time [44].

IV. DISTRIBUTED CORESET CONSTRUCTION

In a distributed setting, the entire dataset P is distributed
across n (n > 1) nodes (i.e., data sources) v1; : : : ; vn,
where each vj has a subset Pj � P . We have shown in
Section III that the k-clustering centers of P form a robust
coreset. However, computing the global k-clustering centers
of a distributed dataset is highly non-trivial. Note that a naive
solution that only includes local centers in the global coreset
may select nearly identical points at different nodes if the local
datasets are similar, which is non-optimal and inefficient.

An existing algorithm: The state-of-the-art solution to the
distributed k-clustering problem is based on an algorithm
called Communication-aware Distributed Coreset Construc-
tion (CDCC) [7]. In our context, this solution works as follows:

1) the server allocates a given sample size t among the
nodes, such that the sample size tj allocated to node vj
is proportional to the local k-clustering cost c(Pj ; Bj)
reported by vj ;

2) each node vj generates and reports a local coreset Dj ,
consisting of the local centers Bj and tj points sampled
i.i.d. from Pj , where each p 2 Pj has a sampling
probability proportional to the cost of clustering p to
the nearest center in Bj ;

3) the server computes a set of k-clustering centers QD
from the coreset D =

S n
j=1 Di.

It is shown in [7] that if t = O( 1
�2 (kd+ log 1

� )) for k-median
and t = O( 1

�4 (kd+log 1
� )+nk log nk

� ) for k-means, then with
probability at least 1��, D is an �-coreset for P w.r.t. the cost
function of k-median/means. According to Definition II.1, this
implies that if QP is the set of optimal k-clustering centers
for P , then c(P;QD)=c(P;QP ) � (1 + �)=(1� �).

Adaptation for coreset construction: First, we skip step
(3) (i.e., computation of QD) and directly use D =

S n
j=1 Dj

as the coreset. This is because the coreset of a coreset cannot
have a better quality than the original coreset [40].

Moreover, in CDCC, the number of local centers k is a
given parameter as it is only designed to support k-clustering.
Since our goal is to support a variety of machine learning
problems, the number of local centers kj at each vj becomes
a design parameter that can vary across nodes. Given a
global coreset size N , we will show that the approximation
error of the constructed coreset depends on (kj)

n
j=1 through

1p
N−

P n
j=1 kj

P n
j=1 approx(Pj ; kj) (see Theorem IV.1). Thus,

we set (kj)
n
j=1 to minimize this error, and obtain the remaining

t = N �
P n
j=1 kj points by sampling.

Combining these ideas yields a distributed coreset construc-
tion algorithm called Distributed Robust Coreset Construction
(DRCC) (Algorithm 2). The algorithm works in three steps:
(1) each node reports its local k-clustering cost for a range of k
(lines 2-3), (2) the server uses the reported costs to configure
the number of local centers kj and the number of random
samples tj at each node vj (lines 5-7), and (3) each node
independently constructs a local coreset using a combination
of samples and local centers (lines 9-12). DRCC generalizes
CDCC in that: (i) it allows the input dataset to be weighted
(wp: weight of input point p; uq: weight of coreset point q);
(ii) it allows the number of local centers to be different for
different nodes. In the special case of kj � k for all j 2 [n]
and wp � 1 for all p 2 P , DRCC is reduced to CDCC.

Communication overhead: DRCC has a communication
overhead of O(Kn), measured by the total number of scalars
reported by the nodes besides the coreset itself. In practice, K
should be a small constant to allow efficient computation of
local k-clustering for k 2 [K]. This overhead is much smaller
than the O((n � 1)Nd) overhead of the merge-and-reduce
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Algorithm 2: Distributed Robust Coreset Construction
((Pj)

n
j=1; N;K)

input : A distributed dataset (Pj)
n
j=1, global coreset

size N , maximum number of local centers K
output: A coreset D =

S n
j=1(Sj [B

kj

j ) for
P =

S n
j=1 Pj

1 each vj (j 2 [n]):
2 compute local approximate k-clustering centers Bkj

on Pj for k = 1; : : : ;K;
3 report (c(Pj ; B

k
j ))Kk=1 to the server;

4 the server:
5 find (kj)

n
j=1 that minimizes

1p
N−

P n
j=1 kj

P n
j=1 c(Pj ; B

kj

j ) s.t. kj 2 [K] andP n
j=1 kj � N ;

6 randomly allocate t = N �
P n
j=1 kj points i.i.d.

among v1; : : : ; vn, where each point belongs to vj

with probability
c(Pj ;B

kj
j )P n

j=1 c(Pj ;B
kj
j )

;

7 communicate (kj ; tj ;
C
t ) to each vj (j 2 [n]),

where tj is the number of points allocated to vj
and C =

P n
l=1 c(Pl; B

kl

l );

8 each vj (j 2 [n]):
9 sample a set Sj of tj points i.i.d. from Pj , where

each sample equals p 2 Pj with probability
mp

c(Pj ;B
kj
j )

for mp = c(fpg; Bkj

j );

10 set the weight of each q 2 Sj to uq =
Cwq

tmq
;

11 set the weight of each b 2 Bkj

j to
ub =

P
p∈Pb

wp �
P
q∈Pb∩Sj

uq , where Pb is the

set of points in Pj whose closest center in Bkj

j is
b;

12 report each point q 2 Sj [B
kj

j and its weight uq
to the server;

approach2 in [40].

Quality of coreset: Regarding the quality of the coreset,
we have proved the following result in Appendix A. Given
a general per-point cost function cost(p; x), define fx(p) :=
wp(cost(p; x) � cost(bp; x) + �dist(p; bp)), where bp is the
center in B

kj

j closest to p 2 Pj . Let dim(F; P ) denote the
dimension of the function space F := ffx(p) : x 2 Xg [7].

Theorem IV.1. If cost(p; x) is �-Lipschitz-continuous in p for
any x 2 X , then 9t = O( 1

�2 (dim(F; P ) + log 1
� ) such that

with probability at least 1 � �, the coreset D constructed by
DRCC based on local k-median clustering, which contains kj

2Specifically, the merge-and-reduce approach works by applying a central-
ized coreset construction algorithm (e.g., Algorithm 1) repeatedly to combine
local coresets into a global coreset. Given n local coresets computed by each
of the n nodes, each containing N points in Rd , the centralized algorithm
needs to be applied n � 1 times, each time requiring a local coreset to be
transmitted to the location of another local coreset. This results in a total
communication overhead of (n � 1)Nd.

local centers from vj (j 2 [n]) and t random samples, satisfies��� X
p∈P

wpcost(p; x)�
X
q∈D

uqcost(q; x)
��� � 2��

nX
j=1

c(Pj ; B
kj

j )

(13)

for all x 2 X .

Here, the parameter dim(F; P ) is a property of the ma-
chine learning problem under consideration, which intuitively
measures the degree of freedom in the solution x 2 X , e.g.,
dim(F; P ) = O(kd) for k-means/median in d-dimensional
space [23]. See Appendix C for more discussions.

Due to the relationship between t and � given in Theo-
rem IV.1, the bound on the right-hand side of (13) depends
on parameters t and (kj)

n
j=1 through 1√

t

P n
j=1 c(Pj ; B

kj

j ).
Specifically, given a total coreset size N , the right-hand side
of (13) is

O

0@�
q

dim(F; P ) + log 1
�q

N �
P n
j=1 kj

�
nX
j=1

c(Pj ; B
kj

j )

1A : (14)

This error bound tells us that the approximation error decreases
with the coreset size N at roughly O(1=

p
N). The error, how-

ever, may not be monotone with the numbers of local centers
kj’s, as increasing their values decreases both

q
N �

P n
j=1 kj

and
P n
j=1 c(Pj ; B

kj

j ). Thus, we select (kj)
n
j=1 to minimize

the error bound in line 5 of Algorithm 2. As the server needs
to know (c(Pj ; B

k
j ))Kk=1 (8j 2 [n]) to solve this minimization

over kj 2 [K], the choice of the parameter K faces a tradeoff:
a larger K yields a larger solution space and possibly a
better configuration of (kj)

n
j=1 to minimize the approximation

error, but incurs a higher communication (and computation)
overhead at the nodes. The optimal K will depend on the
desirable tradeoff and the specific dataset.

Remark: The performance bound in Theorem IV.1 is on
the absolute error, instead of the relative error as guaranteed
by an �-coreset. Nevertheless, if 9� > 0 and (kj)

n
j=1 such

that cost(P; x) =
P
p∈P wpcost(p; x) � �

P n
j=1 c(Pj ; B

kj

j )
for all x 2 X , then (13) implies that D is an �-coreset
for P w.r.t. cost(P; x) with probability at least 1 � � if
t = O(�

2

�2 (dim(F; P ) + log 1
� )), i.e., the total coreset size

N = O(�
2

�2 (dim(F; P )+log 1
� )+

P n
j=1 kj). In the special case

where cost(P; x) is the k-median clustering cost and kj � k,
we have � = 1 (Appendix B) and dim(F; P ) = O(kd) [23],
and thus the size of an �-coreset is O( 1

�2 (kd + log 1
� ) + kn),

which generalizes the result in [7] to weighted datasets.

V. PERFORMANCE EVALUATION

We evaluate the proposed coreset construction algorithms
and their benchmarks on a variety of machine learning prob-
lems and datasets, and compare the cost of each model learned
on a coreset with the cost of the model learned on the original
dataset. We first perform evaluations in a centralized setting
to compare different approaches to construct coresets, and
then evaluate different ways of applying the most promising
approach in a distributed setting.
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Table I
PARAMETERS OF DATASETS

dataset size (jP j) dimension (d) #distinct labels (L)

Fisher’s iris 150 5 3

Facebook 500 19 4

Pendigits 7494 17 10

MNIST 70000 401 10

HAR 10299 562 6

Coreset construction algorithms: In the centralized set-
ting, we evaluate RCC based on k-median clustering (‘RCC-
kmedian’) and RCC based on k-means clustering (‘RCC-
kmeans’), together with benchmarks including the algorithm
in [24] (‘farthest point’), the framework in [23] instantiated
for k-means (‘nonuniform sampling’), and uniform sampling
(‘uniform sampling’). We note that the algorithm in [9] (‘de-
composition’ in Figure 2) is essentially RCC based on k-means
clustering, hence omitted.

In the distributed setting, we take the best-performing algo-
rithm in the centralized setting (’RCC-kmeans’) and evaluate
its distributed extensions – including CDCC [7] and DRCC.

Datasets: We use five real datasets: (1) Fisher’s iris data
[46], which is a 5-dimensional dataset consisting of measure-
ments of 150 iris specimens and their species, (2) Facebook
metrics [47], which is a 19-dimensional dataset consisting of
features of 500 posts published in a popular Facebook page,
(3) Pendigits data [48], which is a 17-dimensional dataset
consisting of feature vectors of 7494 handwritten digits, (4)
MNIST data [49], which consists of 60; 000 images of hand-
written digits for training plus 10; 000 images for testing, each
trimmed to 20�20 pixels, and (5) Human Activity Recognition
(HAR) using Smartphones data [50], which contains 10; 299
samples of smartphone sensor readings during 6 different
activities, each sample containing 561 readings.

We normalize each numerical dimension to [0; 1]. We map
labels to numbers such that the distance between two points
with different labels is no smaller than the distance between
points with the same label. Given a d-dimensional dataset
(including labels) with L types of labels, we map type-l label
to (l � 1)� (l 2 [L]) for � = d

p
d� 1e. See Table I for a

summary. In testing SVM, we map one label to ‘1’ and the
rest to ‘-1’. Each data point has a unit weight.

To generate distributed datasets, we use three schemes:
(i) uniform, where the points are uniformly distributed
across n nodes, (ii) specialized, where each node is
associated with one label and contains all the data
points with this label, and (iii) hybrid, where the first
n0 nodes are “specialized” as in (ii), and the remaining
data are randomly partitioned among the remaining nodes.

Machine learning problems: We evaluate three unsu-
pervised learning problems—MEB, k-means, and PCA, and
two supervised learning problem—SVM and Neural Network
(NN). In our NN experiment, we define a three-layer network,
whose hidden layer has 100 neurons. As an NN of this size

3The model x denotes the center of enclosing ball for MEB and the set
of centers for k-means. For PCA, x = WW T , where W is a d � l matrix
consisting of the first l (l < d) principle components as columns. For SVM,
x1:d � 1 2 Rd � 1 is the coefficient vector and xd 2 R is the offset.
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(a) MEB
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(b) k-means (k = 2)
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(c) PCA (3 components)
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(d) SVM (‘setosa’: 1; others: -1)

Figure 3. Evaluation on Fisher’s iris dataset with varying coreset size (label:
‘species’).
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(a) MEB
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(b) k-means (k = 2)
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(c) PCA (5 components)

20 40 60 80

coreset size

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

av
g 

ac
cu

ra
cy

farthest point
nonuniform sampling
uniform sampling
RCC-kmeans
RCC-kmedian

(d) SVM (‘photo’: 1; others: -1)

Figure 4. Evaluation on Facebook metrics dataset with varying coreset size
(label: ‘type’).

is typically used on datasets with at least 100 features, we
only evaluate NN on MNIST and HAR, and replace it by
SVM for the other datasets. Table II gives their cost functions,
where for a data point p 2 Rd, p1:d−1 2 Rd−1 denotes the
numerical portion and pd 2 R denotes the label. The meaning
of the model parameter x is problem-specific, as explained in
the footnote. We also provide (upper bounds of) the Lipschitz
constant � except for NN, since it is NP-hard to evaluate � for
even a two-layer network [45]; see Appendix B for analysis.
Here l is the number of principle components computed by
PCA, and � is the diameter of the sample space. In our
experiments, � =

p
(d� 1)(L2 � 2L+ 2), which is 4:5 for

Fisher’s iris, 13:4 for Facebook, 36:2 for Pendigits, 181:1 for
MNIST, and 120:8 for HAR. While SVM and NN do not
have a meaningful �, we still include them to stress-test our
algorithm.
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Table II
MACHINE LEARNING COST FUNCTIONS

problem overall cost function3 �

MEB maxp2 P dist(x; p) 1

k-means
P

p2 P wp � minqi 2 x dist(qi ; p)2 2�

PCA
P

p2 P wp � dist(p; xp)2 2�( l + 1)

SVM
P

p2 P wp max(0; 1 � pd (pT
1:d� 1x1:d� 1 + xd )) 1

Neural Net
P

p2 P (� pd ) � log(op ), whereop is the output for inputp1:d� 1 NP-hard [45]

(a) MEB (b) k -means (k = 2 )

(c) PCA (11 components) (d) SVM (`0': 1; others: -1)

Figure 5. Evaluation on Pendigits with varying coreset size (label: `digit').

(a) MEB (b) k -means (k = 2 )

(c) PCA (300 components) (d) NN

Figure 6. Evaluation on MNIST with varying coreset size (label: `labels').

Performance metrics:For the unsupervised learning prob-
lems (MEB,k-means, and PCA), we evaluate the performance
by the normalized cost as explained in Section III-A. For the
supervised learning problems (SVM and NN), we evaluate
the performance by the accuracy in predicting the labels of
testing data. MNIST and HAR datasets are already divided
into training set and testing set. For other datasets, we use the
�rst 80% of data for training, and the rest for testing.

(a) MEB (b) k -means (k = 2 )

(c) PCA (7 components) (d) NN

Figure 7. Evaluation on HAR with varying coreset size (label: `labels').

(a) MEB (b) k -means (k = 2 )

(c) PCA (3 components) (d) SVM (`setosa': 1; others: -1)

Figure 8. Detailed evaluation on Fisher's iris dataset (label: `species', coreset
size:20).

Results in centralized setting: Figures 3–7 show the
performances achieved at a variety of coreset sizes, averaged
over 100 Monte Carlo runs. Better performance is indicated
by lower cost for an unsupervised learning problem or higher
accuracy for a supervised learning problem. Note that even
the largest coresets generated in these experiments are much
smaller (by 84–99:3%) than the original dataset, implying
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(a) MEB (b) k -means (k = 2 )

(c) PCA (5 components) (d) SVM (`photo': 1; others: -1)

Figure 9. Detailed evaluation on Facebook metrics dataset (label: `type',
coreset size:40).

Table III
AVERAGE RUNNING TIME (SEC) (`FP': FARTHEST POINT, `NS':

NONUNIFORM SAMPLING, `US': UNIFORM SAMPLING, `RS':
RCC-KMEANS, `RN': RCC-KMEDIAN )

algorithm Fisher Facebook Pendigits MNIST HAR

FP 1.62 3.00 2.53 21.69 25.92

NS 0.019 0.027 0.095 7.42 0.69

US 2.10e-04 4.60e-04 3.80e-04 0.01 0.0013

RS 0.0083 0.011 0.042 18.76 1.46

RN 0.028 0.30 0.40 100.64 12.39

signi�cant reduction in the communication cost by reporting
a coreset instead of the raw data.

We see that the proposed algorithms (`RCC-kmeans' and
`RCC-kmedian') perform either the best or comparably to the
best across all the datasets and all the machine learning prob-
lems. The farthest point algorithm in [24], designed for MEB,
can perform very poorly for other machine learning problems.
The sampling-based algorithms ('nonuniform sampling' [23]
and `uniform sampling') perform relatively poorly for MEB
and PCA. Generally, we see that the advantages of RCC
algorithms are more signi�cant at small coreset sizes. One
exception is the SVM accuracy for Fisher's iris (Figure 3 (d)),
where points on the peripheral of the dataset (which are likely
to be chosen by the farthest point algorithm) happen to have
different labels and induce a rough partition between the points
labeled 1̀' and those labeled `� 1', causing better performance
for `farthest point' at very small coreset sizes.

Besides the average normalized costs, we also evaluated
the CDFs of the results, shown in Figures 8–12. The results
show similar comparisons as observed before. Moreover, we
see that the proposed algorithms (`RCC-kmeans' and `RCC-
kmedian') also have signi�cantly less performance variation
than the benchmarks, especially the sampling-based algorithms
(`nonuniform sampling' and `uniform sampling'). This means

(a) MEB (b) k -means (k = 2 )

(c) PCA (11 components) (d) SVM (`0': 1; others: -1)

Figure 10. Detailed evaluation on Pendigits dataset (label: `digit', coreset
size:40).

(a) MEB (b) k -means (k = 2 )

(c) PCA (300 components) (d) NN

Figure 11. Detailed evaluation on MNIST dataset (label: `labels', coreset
size:50).

that the quality of the coresets constructed by the proposed
algorithms is more reliable, which is a desirable property.

Between the proposed algorithms, `RCC-kmeans' some-
times outperforms `RCC-kmedian', e.g., Figure 6 (c–d). More-
over, we note that `RCC-kmeans' can be an order of magnitude
faster than `RCC-kmedian', as shown in Table III. Note
that our primary goal in constructing a robust coreset is to
reduce the communication cost in scenarios like Figure 1
while supporting diverse machine learning problems, instead
of speeding up the coreset construction at the data source.
This result shows that such robustness may come with certain
penalty in running time. Nevertheless, the running time of
`RCC-kmeans' is comparable to the benchmarks.


