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Service Placement for Collaborative Edge

Applications
Lin Wang, Lei Jiao, Ting He, Jun Li, and Henri Bal

Abstract—Edge computing is emerging as a promising com-
puting paradigm for supporting next-generation applications
that rely on low-latency network connections in the Internet-
of-Things (IoT) era. Many edge applications, such as multi-
player augmented reality (AR) gaming and federated machine
learning, require that distributed clients work collaboratively
for a common goal through message exchanges. Given an edge
network, it is an open problem how to deploy such collaborative
edge applications to achieve the best overall system performance.
This paper presents a formal study of this problem. We first
provide a mix of cost models to capture the system. Based on a
thorough formulation, we propose an iterative algorithm dubbed
ITEM, where in each iteration, we construct a graph to encode
all the costs and convert the cost optimization problem into a
graph cut problem. By obtaining the minimum s-t cut via existing
max-flow algorithms, we address the original problem via solving
a series of graph cuts. We rigorously prove that ITEM has
a parameterized constant approximation ratio. Inspired by the
optimal stopping theory, we further design an online algorithm
called OPTS, based on optimally alternating between partial and
full placement updates. Our evaluations with real-world data
traces demonstrate that ITEM performs close to the optimum
(within 5%) and converges fast. OPTS achieves a bounded
performance as expected while reducing full updates by more
than 67% of the time.

Index Terms—Edge computing, service placement, perfor-
mance optimization, approximation.

I. INTRODUCTION

EDGE computing has become a promising data process-

ing solution for the Internet-of-Things (IoT) ecosystem

thanks to its low-latency promises [2], [3]. Unlike large-scale

cloud data centers, edge clouds are huge in quantity and

are typically dispersed at the edge of the network [4]. Such

proximity provides IoT applications a set of new opportuni-

ties including low-latency, reliable communication, early-stage

data filtering, and privacy protection. Many edge applications,

while reaping these benefits, require that multiple distributed

clients work collaboratively for a joint task, sharing a common

state that is replicated for and synchronized across all the

clients [5], [6]. A typical example is multi-player gaming in

augmented reality (AR) like Facebook Horizon [7] where a
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Fig. 1. Service placement problem for collaborative edge applications.

set of players (i.e., clients) at different geographical locations

explore a common virtual world. Another example is federated

machine learning where distributed clients collect observations

and jointly train a machine learning model (with shared model

weights) instead of gathering all the data to a central place for

processing [8]–[10].

Edge computing has been deployed in various industries

for handling the situation posed by resource limitation of

local processing and large, unpredictable latency of remote

cloud-based processing [11], [12]. According to the Open

Edge Computing initiative [13], an edge cloud is able to

offer compute/storage resources to any user in close proximity

through an open, standardized interface, allowing a set of

edge clouds in the same geographical region (e.g., a city) to

form a shared edge resource pool. With the help of light-

weight virtualization techniques [14], edge resources can be

allocated at a fine granularity subject to quality-of-service

(QoS) requirements and system-wide optimization goals.

In this paper, we focus on collaborative edge applications

and we study the problem of service placement for such ap-

plications in the edge environment. As illustrated in Figure 1,

a collaborative edge application consists of multiple dispersed

clients and each client is composed of two parts: a service

entity (SE) running on an edge node and a user entity (UE)

running on the user device. The SE, defined as the bundle

of the client data and the processing logic on the data, takes

care of the client state and computation-intensive tasks such as

object recognition and tracking in the AR gaming case as well

as the synchronization among clients, while the UE is in charge

of collecting client data and provides feedback to the client.

The SE and its corresponding UE communicate to each other

through some dedicated network protocols [15]. The service

placement problem is to decide where to place the SE of each

client in an edge network consisting of a set of edge nodes
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in order to achieve satisfactory QoS for the clients as well

as economic (inexpensive) operations of the edge network.

We call this problem the collaborative edge service placement

(CESP) problem, which we deem to be fundamental for a rich

set of collaborative edge applications.

The CESP problem is hard to solve and we have to

consider the following conflicting factors: (1) Edge nodes are

heterogeneous in terms of maintenance and operational costs

and thus, achieving the best economic operations would push

the SEs to edge nodes with lower operational costs; (2) SEs

need to exchange data with their associated UEs and thus,

placing an SE close to their UE could improve the QoS of the

client with respect to communication latency; (3) SEs also

need to exchange data with other SEs, e.g., synchronizing

the state with other clients or completing a task with other

clients collaboratively, and thus, placing SEs with frequent

communication close to each other could result in better QoS

for the clients of these SEs; (4) Since edge nodes are not

intentionally designed to simultaneously accommodate a huge

number of SEs, especially for edge applications that require

specific hardware such as GPUs, resource contention needs to

be well controlled, which suggests that each edge node should

not be too crowded with SEs. The third factor is unique to

CESP and all these intrinsically intertwined factors together

complicate the problem.

Prior research efforts fall short of jointly considering all

the above factors. On the one hand, most studies on edge

computing are focused on computation offloading techniques

and hardware/software architectures [16], [17]; edge resource

management proposals generally lack the specific consider-

ation of the state synchronization among clients as in the

case of collaborative edge applications [18]–[26]. On the other

hand, solutions for data placement across servers or distributed

clouds for social networks address the optimization of network

traffic or data storage, but neglect the impact of multiple im-

portant factors in the edge context such as activation cost and

resource contention [27]–[31] which fundamentally change the

settings and call for different approaches. While the general

service placement problem has been extensively explored in

various settings [32], [33], no existing algorithms are known

to solve the CESP problem.

In this paper, we present a formal study of the CESP prob-

lem. In particular, we make the following four contributions:

(1) We model the identified challenges with a comprehensive

cost model for the edge network, based on which we

formulate the CESP problem as a combinatorial optimiza-

tion, which we prove is NP-hard.

(2) We transform the CESP problem and propose an efficient

algorithm called ITerative Expansion Moves (ITEM) to

solve it based on iteratively solving a series of minimum

s-t cut problem instances.

(3) For the online version of CESP, we propose an online

algorithm - OPTS, inspired by the optimal stopping

theory. OPTS aims to optimize the alternation between

ITEM and a tailored version of ITEM for incremental

(partial) updates and minimizes the expected system cost

under system stability cosntraints.

TABLE I
NOTATIONS

Symbol Description

P set of edge nodes
U set of clients
Up set of clients with SEs placed on edge node p
pu edge node where the SE of client u is placed
p◦
u

edge node attached to the AP that client u is connected to
p set of SE placement for all the clients, i.e., {p1, ..., pm}

p
q set of SE placement after expansion move on edge node q

fu comm. frequency between the UE and the SE of client u
fu,v comm. frequency from client u to client v

d(p, q) network delay between edge nodes p and q
mp number of SEs on edge node p
a(p) activation cost of edge node p

bu(pu) cost of placing the SE for client u on edge node pu
c1(p), c2(p) parameters in co-location cost of edge node p

L set of all interacting client pairs
x binary decisions in an expansion move, i.e., {x1, ..., xm}

(4) We carry out extensive experiments with real-world data

traces to validate the performance of the proposed al-

gorithms. The results show that: ITEM performs very

close to the theoretical optimal solution and outperforms

the baselines by more than 2×, while exhibiting fast

convergence. OPTS can reduce the frequency of full

update (i.e., invocation of ITEM) by over 67%.

II. THE MODEL

We model our system and introduce four types of cost, based

on which we formulate the CESP problem. Table I lists the

main notation we will use throughout the paper.

A. System Model

We are given an edge network consisting of a set of n edge

nodes, denoted by P = {p1, . . . , pn}, which are dispersed in a

city. Each edge node is accompanied by an access point (AP)

which allows the client to connect to the platform. We assume

that hardware resources in the edge nodes are virtualized

using container-based lightweight virtualization technologies

and can thus be allocated and shared flexibly. All the edge

nodes are connected to a wide area network (WAN) inside a

city and the delay between each pair of edge nodes p and q
is given by function d(p, q) for p, q ∈ P .

We consider the problem of provisioning a collaborative

edge application on the given edge network to serve m clients

distributed in the city. An example scenario is illustrated in

Figure 1. The set of clients is given by U = {u1, . . . , um}.
Each client u has access to the edge network via its nearest

AP, denoted by p◦u, in their vicinity.1 For each client u ∈ U ,

an SE is brought up on one of the edge nodes pu to handle the

computation for client u (e.g., recognizing and tracking objects

for client u in an AR application) within the collaborative edge

application. The SE encapsulates all the necessary runtime

environment as well as the service state for the client. The

association traffic is measured by the frequency of communi-

cation between a client u and their SE pu, which is denoted by

1With a slight abuse of notation, we also use p◦
u

, i.e., the edge node that
is directly attached to the access point, to denote the access point.
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Fig. 2. Proximity cost includes the delay of the association traffic between
the client and their SE and that of the synchronization traffic between clients.

fu. In addition to employing the SE to process data, each client

also synchronizes with other clients within the application,

e.g., accessing the state of other clients or completing a task

collaboratively with other clients. The synchronization traffic

is measured by the frequency of interactions from client u
to client v, which is given by fu,v (fu,v , 0 if u = v) for

u, v ∈ U . We denote by L the set of all interacting client pairs

where L = {(u, v) |u,v∈U∧u 6=v}.

B. Cost Models

We jointly consider multiple performance measures of the

system. In particular, we model the following four cost types.

Activation cost. For each of the edge nodes, if there is at least

one SE being placed on it, a static activation cost has to be

paid. Such an activation cost typically represents the cooling

or other maintenance efforts in the edge node irrespective of

the number of SEs being placed on the edge node [34]. The

set of SEs that are placed on edge node p is denoted by Up =
{u | p ∈ P ∧ pu = p} and its cardinality is denoted by mp ∈
Z
+. Then, for each edge node p ∈ P we define its monetary

cost for maintaining its active state by a(p) (a(p) > 0) if

mp > 0 and by 0 if mp = 0, meaning that an edge node can

be switched off (to save energy and maintenance costs) if it

hosts no SEs. The edge cloud operator sets a(p) according to

the real maintenance cost for the edge node p. We introduce

a variable δp ∈ {0, 1} where δp = 1 if mp > 0; δp = 0
otherwise. The combined activation cost of all the edge nodes

can be represented by

EA =
∑

p∈P

a(p)δp. (1)

Placement cost. The placement cost is associated to the

creation of SEs, which is incurred by the operation and

communication of the servers for the SEs. For each client

u ∈ U , the monetary cost for using the computing and

storage resources when placing their SE on edge node p is

characterized by bu(pu) > 0, which can vary among p and u
due to the heterogeneity of the edge nodes and the difference

in client demands. Denoting by pu ∈ P the placement decision

for the SE of client u, the combined cost of placing all the

SEs on the set of edge nodes can then be represented by

EB =
∑

u∈U

bu(pu). (2)

Proximity cost. The proximity measure of a client contains

two parts: how timely a client (or their UE) communicates with

their SE and how timely a client communicates with other

clients, as depicted in Figure 2. In order to give priority to

frequent communications, we incorporate the communication

frequency fu ≥ 0 between the UE and the SE of client u
and the access frequency fu,v ≥ 0 from client u to client

v. As a result, the combined proximity cost for the former

is given by
∑

u∈U fud(u, pu), while for the latter it is given

by
∑

(u,v)∈L fu,vd(pu, pv). We notice that the delay between

a client and its AP is actually irrelevant to the placement

decision. For the sake of simplicity we will omit it from our

model and will use the following form for the total proximity

cost in the rest of the paper:

ED = υD
∑

u∈U

fud(p
◦
u, pu) + υD

∑

(u,v)∈L

fu,vd(pu, pv), (3)

where υD is a parameter that converts the proximity mea-

sure into monetary cost. This parameter should be defined

according to the revenue loss of the cloud provider under

the perceived latency [35]. Our model can also incorporate

the transmission delay which is calculated as the exchanged

data volume between any two clients divided by the network

bandwidth between the two edge nodes hosting the two clients

respectively. However, transmission delay is not regarded as

a prority since the metadata exchanged between the different

clients is usually small in size, e.g., few bytes or kilobytes

for one synchronization cycle [36]. Therefore, we omit the

transmission delay in our formulation for simplicity.

Co-location cost. The co-location cost is incurred by the

resource contention among the SEs that are placed on the

same edge node. This is considered unavoidable as edge nodes

are not intentionally designed for large-scale resource multi-

plexing and perfect performance isolation is typically difficult

with light-weight virtualization. The performance degradation

due to SE co-location can be characterized by the “dilation”

factor which was proposed to capture the performance of

applications running on shared resources [37]. The dilation

factor is defined as the ratio of the running time of the

applications co-located on an edge node over the running time

of an application running individually on the same edge node.

According to Property 1 in [37], the dilation factor in our case

can be approximated by the number of co-located SEs since

the SEs are identical in the same application. Based on this,

we use a general function c1(p)mp + c2(p) to characterize

the monetary cost for the performance degradation of the

co-located SEs given that performance degradation can also

be induced by contention of resources other than CPU (e.g.,

memory, cache, or network) [38] which is represented by

a constant c2(p). The model is general in the sense that

the parameters c1(p) and c2(p) can be tuned to suit any

practical needs depending on the edge node specification and

the application type. Consequently, the total co-location cost

in the system is characterized by

EC =
∑

p∈P

(c1(p)mp + c2(p))δp. (4)

This cost can also be written with respect to a function g(pu)
defined as g(pu) = c1(p) if pu = p and zero otherwise, i.e.,

EC =
∑

u∈U

g(pu) +
∑

p∈P c2(p). (5)
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Collectively, the above costs provide a comprehensive model

for the overall system performance.

C. Problem Formulation

The overall performance of the application with SEs being

placed is measured by the total system cost, i.e.,

E = EA + EB + ED + EC . (6)

The CESP problem can now be formally defined as follows.

Definition 1. Given a collaborative edge application with a

set U of clients running on an edge network consisting of

a set P of edge nodes, the CESP problem is to decide the

placement of all SEs of the application, i.e., determining pu
for all u ∈ U , such that the total cost, defined by E, of the

edge network is minimized.

While the model does not impose hard resource constraints

directly, hard constraints are considered in our algorithm

design later. In Section III-F we show that hard constraints

due to hardware (e.g., GPU) or security requirements can be

modeled by restricting the number of SEs that can be placed

to an edge node or restricting the placement to predetermined

candidate set of edge nodes. The formulation is general enough

to capture other service placement problems with similar

affinity or anti-affinity constraints. However, the scope of the

paper is limited to collaborative edge applications for clarity.

D. Hardness

Non-surprisingly, the problem is hard to solve and we show

Theorem 1 (Hardness). CESP is NP-hard.

Proof. We conduct the proof through a polynomial-time re-

duction from the uncapacitated facility location (UFL) prob-

lem, which is known to be NP-hard [39]. The UFL problem

is described as follows: Given a set of m customers, a set of

n potential facilities, a cost function ei,j denoting the cost of

shipping a product from facility i to customer j, a fixed cost

ri of opening facility i, the problem is to choose the facilities

to open and the facilities to use to supply the m customers, in

order to satisfy some fixed demand at minimum cost. Let us

denote by xi the decision variable for the opening of facility

i, i.e., ηi = 1 if facility i is open; ηi = 0 otherwise. We also

use xi,j = 1 to denote that customer j is supplied by facility

i; xi,j = 0 otherwise. The UFL problem can be formulated

with the following integer linear program.

(P1)min

n∑

i=1

riηi +

n∑

i=1

m∑

j=1

ei,jxi,j

s.t.

n∑

i=1

xi,j = 1, ∀j = 1, ...,m,

xi,j ≤ ηi, ∀i = 1, ..., n, j = 1, ...,m,

ηi, xi,j ∈ {0, 1}, ∀i = 1, ..., n, j = 1, ...,m.

(7)

The first constraint ensures that every customer will be sup-

plied by a facility, while the second constraint ensures that

only open facilities will be used to supply customers.

Algorithm 1 ITEM

1: flag← true;

2: while flag = true do ⊲ Search until convergence

3: flag← false;

4: for q ∈ P do ⊲ Iterate over edge nodes

5: p← {pu |u∈U}; ⊲ Current placement

6: p
q ← EXPANSION(p, q); ⊲ Expansion move

7: if E(pq) < E(p) then ⊲ Improvement found

8: p← p
q;

9: flag← true;

10: return p = {pu |u∈U};

Algorithm 2 EXPANSION

1: construct an auxiliary graph G w.r.t. edge node q;

2: obtain the minimum s-t cut on graph G using the state-

of-the-art max-flow algorithm;

3: extract expansion decision x from the graph cut;

4: for u ∈ U do ⊲ Expanding edge node q
5: pu ← q if xu = 1;

6: return p = {pu |u∈U};

We now transform an arbitrary UFL instance to an instance

of CESP. We treat the customers, facilities, costs ri and ei,j as

the clients, edge nodes, activation cost a(p) and placement cost

bu(p). Consequently, we obtain a special case for CESP where

the proximity and co-location costs are all set to zeros. Such

a transformation is obviously in polynomial time. Therefore,

if we obtain an optimal solution to the CESP instance, an

optimal solution to the UFL instance yields, which reaches a

contradiction as UFL is NP-hard.

The above complexity result reveals that any exact solution

finding the optimum is impractical. Thus, we aim to design

an efficient approximate algorithm in the following section.

III. ALGORITHM DESIGN

Essentially, CESP requires minimizing a nonlinear function

in a search space with a large number of dimensions. A general

approach to exploring the optimum of such an optimization

problem is starting from an arbitrary SE placement and it-

eratively improving the solution by local adjustments. While

general-purpose optimization techniques such as simulated

annealing can be employed, they require exponential time in

theory and are extremely slow in practice. Our approach is

also based on local adjustments, but we observe that a set

of optimal local adjustments can be simultaneously obtained

by solving a graph cut problem, rather than be carried out

one by one or pairwise. As the graph cut problem can be

efficiently solved using existing max-flow algorithms, the

searching complexity is thus significantly reduced.

A. Algorithm Design Overview

We propose an efficient algorithm for the CESP problem

based on ITeractive Expansion Moves (ITEM). The pseu-

docode of the algorithm is listed in Algorithm 1. An expansion

move is defined as an optimization process where an edge
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u1 u2

u3 u4 u5 u6 u7 u8 u9

Uq

Up1
Up2

Up3

Expansion Move

xu4
= 1 xu8

= 1 xu9
= 1

Fig. 3. Example expansion move where edge node q is selected for expansion.

node q ∈ P is selected for “expansion” and variables pu
are simultaneously given a binary choice to either stay as

pqu = pu or switch to edge node q, i.e., pqu = q (q is thus

expanded). Let p
q = {pq1, . . . , p

q
m} denote the placement

after one feasible expansion on edge node q with respect

to current placement p. Each accepted expansion move will

strictly reduce the total cost E(p) and the algorithm keeps

searching by applying expansion moves iteratively over all

the edge nodes until convergence. As the solution space is

finite, ITEM must terminate after a finite number of iterations.

Empirically, we have observed that in general it converges very

fast (within five iterations), as shown in Figure 8.

The resultant placement pq can be alternatively expressed

by an indicator vector with binary decision variables x =
{x1, . . . , xm} where for all u ∈ U we define xu = 1 if pqu = q
and xu = 0 otherwise. Note that if pu = q already, we always

set xu = 1. We denote by Eq(x) the total cost corresponding

to the new placement pq . The expansion move will compute

an optimal x∗ with the minimal Eq(x∗), from which the new

placement pq will be produced. A simple example is illustrated

in Figure 3, where clients u4, u8 and u9 switch to the selected

edge node q from edge node p1, p2, and p3, respectively,

in the expansion move, while the other clients stay at their

current edge node. Clients u1 and u2 will stay in edge node

q according to the definition of expansion move. We have the

following mappings. Note that the terms in circle represent

that xu = 1 if u is already on q in p.

u u1 u2 u3 u4 u5 u6 u7 u8 u9

p q q p1 p1 p1 p2 p2 p2 p3
p
q q q p1 q p1 p2 p2 q q

x 1© 1© 0 1 0 0 0 1 1

It can be observed that the size of the solution space for

x
∗ is 2m and any brute-force search will result in exponential

time complexity. We will show in the following sections that

actually, x∗ can be efficiently computed by encoding the total

cost Eq(x) in a graph and solving a corresponding graph

cut problem leveraging existing max-flow algorithms. The

state-of-the-art max-flow algorithms like the Orlin’s [40] and

KRT [41] can solve max-flow in time proportional to the

product of the number of vertices and the number of links

of the flow network in most cases.

B. Transforming the Objective Function

Given a current placement p and a selected edge node q, the

objective of CESP after an expansion move can be expressed

in terms of x. We define the negation of x as x̄, i.e., x̄ = 1−x.

The activation cost can be rewritten as follows.
∑

p∈P

a(p)δp =
∑

p∈P\q

a(p)(1−
∏

u∈Up

xu) + σq, (8)

meaning that the activation cost of p (p 6= q) is taken into

account if and only if there exists at least one SE staying at p,

i.e., ∃u, xu = 0. Unfortunately, the product operation brings

high-order terms in x, which increases the complexity to the

problem solving. However, we can actually transform this term

into a sum of quadratic and linear terms by introducing an

auxiliary variable zp for each edge node p. For a particular

edge node p ∈ P \ q, the transformation is
∏

u∈Up

xu = max
zp∈{0,1}

(
∑

u∈Up

xuzp − (mp − 1)zp). (9)

The final term σq in Eq. (8) is used to correct the case where

edge node q does not host any SEs in the current placement

p. So this term incorporates the cost of q after the expansion

move if q is being used in p
q , i.e., σq = a(q)(1−

∏

u∈U x̄u).
Now, let us rewrite the the placement and the proximity

costs. Observe that

bu(p
q
u) = bu(q)xu + bu(pu)x̄u, (10)

d(p◦u, p
q
u) = d(p◦u, q)xu + d(p◦u, pu)x̄u, (11)

d(pqu, p
q
v) = d(pu, q)x̄uxv

+d(q, pv)xux̄v + d(pu, pv)x̄ux̄v. (12)

Applying the above to (2) and (3) we can obtain

Eq
B(x) =

∑

u∈U

(bu(q)xu + bu(pu)x̄u), (13)

Eq
D(x) = υD

∑

u∈U

fu(d(p
◦
u, q)xu + d(p◦u, pu)x̄u)

+υD
∑

(u,v)∈L

fu,v(d(pu, q)x̄uxv

+d(q, pv)xux̄v + d(pu, pv)x̄ux̄v). (14)

We now transform the co-location cost Eq
C . We notice that

the second half of the co-location cost
∑

p∈P c2(p)δp has the

same form as the activation cost and we can apply exactly the

same technique as explained above. Thus, we omit this part

of cost in the following analysis for brevity. Denoting by mq
p

the number of SEs being placed onto edge node p after the

expansion move, the co-location cost is simplified as follows.

Eq
C =

∑

p∈P

c1(p)m
q
p +

∑

p∈P

c2(p)δ(p) (15)

=
∑

u∈U

c1(q)xu +
∑

u∈U

c1(pu)x̄u +
∑

p∈P

c2(p)δp.

It is obvious that the first half of the co-location cost is linear in

the xu. The total cost in the objective after the expansion move

can be expressed in terms of x, i.e., Eq = Eq
A+Eq

L+Eq
D+Eq

C .

C. Optimizing Expansion Move via Minimizing Graph Cuts

We show that an optimal expansion move can be obtained

by simply solving a graph cut problem. More specifically,
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we construct a helper graph and encode all the costs into

weights on the graph edges. We then demonstrate that the

min-cut of the graph corresponds to the optimal decisions for

the expansion move.

Graph construction. We now construct a graph G to encode

the total cost E in our model. We first introduce m vertices,

each of which corresponds to each client u. We then introduce

n vertices to represent the set of edge nodes. Finally, we add

a source vertex s and a vertex node t, where s corresponds to

decision xu = 0 and t corresponds to decision xu = 1. As a

result, the set of vertices in G is given by {u |u∈U}∪{p |p∈P

} ∪ {s, t}. We start with encoding the activation cost. We

first define an m-dimension indicator vector y = {y1, ..., ym}
where yu = 1 if u ∈ U \ Uq and yu = 0 otherwise. Then,

we re-parameterize the right hand of Eq. (8) such that each

quadratic monomial has exactly one complemented variable

(e.g., x̄z) with nonnegative coefficient, i.e.,
∑

p∈P

a(p) +
∑

p∈P\q

(−a(p)zp +
∑

u∈Up

a(p)x̄uzp)

=
∑

u∈U

yu(a(pu)x̄uzpu
− a(pu)zpu

) +
∑

p∈P

a(p). (16)

For each u ∈ Up, we add a link from u to pu with weight

a(p). We also introduce a link from each p to the sink t with

weight a(p). This graph structure ensures that only weight of

a(p) will be included in the graph cut. The encoding of the

correction term σq in (8) is analogous to the above but we use

a simpler test-and-reject technique to handle this term [42].

We ignore this term during the expansion move and explicitly

add it to Eq
A if there exists u ∈ U such that xu = 1. If the

cost would increase, we reject the expansion move. Note that

the second component in Eq. (15) is similar to the activation

cost and can be handled exactly the same way. The weights

on the links mentioned above become a(p) + c2(p).
For the other costs, we combine them all together and

simplify them to the following form after some simple algebra.
∑

(u,v)∈L

πu,vx̄uxv +
∑

u∈U+

τuxu +
∑

u∈U−

|τu|x̄u + κ. (17)

Note that we split u ∈ U into two subsets U+ and U− where

τu ≥ 0 if u ∈ U+ and τu < 0 otherwise. The symbol πu,v is

the coefficient of pairwise terms, where

πu,v = υDfu,v(d(pu, q) + d(q, pv)− d(pu, pv)), (18)

and τu is the coefficient for unary terms, where

τu = b(q, u)− b(pu, u) + υDfu(d(p
◦
u, q)− d(p◦u, pu))

+ υD
∑

v∈U

(fu,vd(q, pv) + fv,ud(q, pu)− fu,vd(pu, pv))

+ c1(q)− c1(pu), (19)

and κ is a constant, which can be omitted from the graph

construction as it has no impact on the expansion decisions.

For each u ∈ U+, we add a link from source vertex s to vertex

u with weight τu. Similarly, for each u ∈ U−, we add a link

from vertex u to the sink vertex t with weight |τu|. For each

interacting client pair u, v, we add a link from u to v with

weight πu,v . The resultant graph G is illustrated in Figure 4.

...
u1 u2 u3 u4 um

p1 p2 pn

U+ U−
τu

|τu|

a(p1) + c1(p1)

a(p1) + c1(p1)

a(pn) + c1(pn)

a(pn) + c1(pn)

s⇔ xu = 0

t⇔ xu = 1

Fig. 4. Helper graph construction for encoding cost Eq .

The placement of SEs now can be obtained by computing

the minimum s-t cut on G by employing the state-of-the-art

max-flow algorithm [40], [41]. Specifically, we place the SEs

after the expansion move according to the following policy.

pqu ,

{

q if link s-u is in the cut,

pu otherwise.
(20)

Correctness. We now analyze the correctness of the above

approach. In particular, we show that

Theorem 2. Minimizing Eq is equivalent to obtaining the

minimum s-t cut of graph G.

Proof. We first show the feasibility of obtaining the minimum

s-t cut on the graph G. Through the graph construction we

know that given an arbitrary Eq there always exists a graph G.

However, the minimum s-t cut can be computed in polynomial

time only if all the edge weights are nonnegative. For τu
and a(p) + c2(p), this constraint follows in nature, while

πu,v ≥ 0 is always satisfied which can be justified by the

triangle inequality. Note that the network propagation delay is

proportional to the physical distance and thus, d(·) is a metric

and the triangle inequality holds since the physical distance is

a metric in the Euclidean space.

Now we show the equivalence. For each edge node p 6=
q, cost a(p) is counted as long as there exists one link in

set {(u, p) |u∈U,p∈P\q} ∪ {(p, t)} being contained in the cut,

meaning that there exists u ∈ Up such that xu = 0. Thanks

to the auxiliary variable zp, only link p-t will be included in

the cut if there are more than one client that satisfies xu = 0,

contributing only a cost of a(p) to Eq . For any pair of vertices

u and v in graph G, the pairwise cost πu,v contributes to Eq if

and only if xu = 0 and xv = 1. This corresponds to the case

that link (u, v) is contained in the minimum s-t cut, where

u is assigned to the s-component and v is assigned to the t-
component. For any u ∈ U+, the unary cost is counted if and

only if the cut contains link s-u, meaning xu = 1. Similarly,

for any u ∈ U−, the unary cost is counted if and only if the

cut contains link u-t, meaning that xu = 0.

D. Approximation Ratio

We now provide a formal analysis to the performance

of ITEM. Upon convergence, the performance gap between
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ITEM and theoretical optimum can be bounded by a parame-

terized constant as stated in the following theorem.

Theorem 3. Denote by constant ǫ =
∑

p∈P a(p) the maximal

total activation cost achieved when all edge nodes in P are

activated. Assume p′u and p∗u are the placement given by ITEM

and the optimal placement of the SE for client u, respectively.

We have E(p′u) ≤ 2λE(p∗u) + ǫ, where

λ =
maxp,q d(p, q)

minp,q d(p, q)
. (21)

Proof. We first rearrange the total cost E into the following

form with four different types of costs.

E = EA + EB + ED + EC

=

E1
︷ ︸︸ ︷
∑

u∈U

bu(pu) +
∑

u∈U

υDfud(p
◦
u, pu) +

∑

u∈U

g(pu) (22)

+

E2
︷ ︸︸ ︷
∑

(u,v)∈L

υDfu,vd(pu, pv)+

E3
︷ ︸︸ ︷
∑

p∈P

(a(p) + c2(p))δp,

where E1 is the unary cost which only depends on the SE

placement of each single client, E2 is the pairwise cost which

depends on the placement of each pair of clients, and E3 is the

one-time occupation cost (consisting of the activation cost and

part of the co-location cost) over all edge nodes. The final term

is a constant which is irrelevant to the client SE placement and

thus, we omit it from now on in the analysis.

We now select an arbitrary edge node q ∈ P and define the

set of clients that belong to q in the optimal solution p∗u as

Uq , {u ∈ U : p∗u = q}. From the solution p′u generated by

ITEM, we can produce a new solution pqu by following one

expansion move:

pqu =

{

q if u ∈ Uq,

p′u otherwise.
(23)

As p′u is a local optimum generated by ITEM with respect to

expansion moves, such an expansion move will increase the

total cost and thus, we have

E(p′u) ≤ E(pqu). (24)

We now partition all edge nodes into three sets, i.e., interior,

exterior, and boundary sets, with respect to Uq as follows:

U I
q = Uq, U

O
q = U \ Uq, U

B
q = ∅.

Similarly, we partition all the client interactions into three sets

with respect to Uq as follows:

LI
q = {(u, v) ∈ L : u ∈ Uq, v ∈ Uq}, (25)

LO
q = {(u, v) ∈ L : u 6= Uq, v 6= Uq}, (26)

LB
q = {(u, v) ∈ L : u ∈ Uq, v 6= Uq}. (27)

For simplicity, let us define Iq , U I
q ∪ LI

q , Oq , UO
q ∪ LO

q ,

and Bq , UB
q ∪ LB

q . Let E4(·)|S denote a restriction of the

summands of cost E to only the following terms

E4(·)|S = E1(pu)|u∈US
q
+ E2(pu, pv)|(u,v)∈LS

q
. (28)

We can derive the following relationships.

E4(p
q
u)|I = E4(p

∗
u)|Iq , (29)

E4(p
q
u)|O = E4(p

′
u)|Oq

, (30)

E4(p
q
u)|B ≤ λE4(p

∗
u)|Bq

. (31)

The first equation follows because the SE placement for clients

in U I
q is the same for both solutions pqu and p∗u. The second

equation follows because the SE placement for clients in UO
q

is the same for both solutions pqu and p′u. The last inequality is

because d(pqu, p
q
v) ≤ λd(p∗u, p

∗
v). Based on Eq. (24), we have

E4(p
′
u)|Iq + E4(p

′
u)|Oq

+ E4(p
′
u)|Bq

+ E3(p
′
u)

≤ E4(p
q
u)|Iq + E4(p

q
u)|Oq

+ E4(p
q
u)|Bq

+ E3(p
q
u). (32)

Combined with Eq. (29), (30), and (31), we have

E4(p
′
u)|Iq + E4(p

′
u)|Oq

+ E4(p
′
u)|Bq

+ E3(p
′
u)

≤ E4(p
∗
u)|Iq + E4(p

′
u)|Oq

+ λE4(p
∗
u)|Bq

+ E3(p
q
u). (33)

Consequently, we have
∑

q∈P

(
E4(p

′
u)|Iq + E4(p

′
u)|Bq

)
+ E3(p

′
u)

≤
∑

q∈P

(
E4(p

∗
u)|Iq + λE4(p

∗
u)|Bq

)
+ E3(p

q
u). (34)

Note that when summarized over all the edge nodes,
∑

q∈P E4(p
′
u)|Iq = E1(p

′
u) +

∑

q∈P E2(p
′
u, p

′
v)|(u,v)∈LI

q
and

∑

q∈P E4(p
′
u)|Bq

= 2E2(p
′
u, p

′
v)|(u,v)∈∪LB

q
. The former is

trivial and the latter is because every pair (u, v) ∈ LB
q is calcu-

lated twice when iterating q ∈ P , once for (u, v) and the other

time for (v, u). Similarly for p∗u we have
∑

q∈P E4(p
∗
u)|Iq =

E1(p
∗
u) + E2(p

∗
u, p

∗
v)|(u,v)∈∪LI

q
and

∑

q∈P λE4(p
∗
u)|Bq

=
2λE2(p

∗
u, p

∗
v)|(u,v)∈∪LB

q
. Therefore, we have

E1(p
′
u) + E2(p

′
u, p

′
v)|(u,v)∈∪LI

q

+2E2(p
′
u, p

′
v)|(u,v)∈∪LB

q
+ E3(p

′
u)

≤ E1(p
∗
u) + E2(p

∗
u, p

∗
v)|(u,v)∈∪LI

q

+2λE2(p
∗
u, p

∗
v)|(u,v)∈∪LB

q
+ E3(p

q
u). (35)

Since it holds that

E(p′u) = E1(p
′
u) + E2(p

′
u, p

′
v)|(u,v)∈∪LI

q

+E2(p
′
u, p

′
v)|(u,v)∈∪LB

q
+ E3(p

′
u), (36)

E(p∗u) = E1(p
∗
u) + E2(p

∗
u, p

∗
v)|(u,v)∈∪LI

q

+E2(p
∗
u, p

∗
v)|(u,v)∈∪LB

q
+ E3(p

∗
u), (37)

we have

E(p′u) ≤ E(p∗u) + (2λ− 1)E2(p
∗
u, p

∗
v)|(u,v)∈∪LB

q

−E2(p
′
u, p

′
v)|(u,v)∈∪LB

q
+ E3(p

q
u)− E3(p

∗
u)

≤ 2λE(p∗u) + ǫ. (38)

The proof is completed.

Note that in theory, minp,q d(p, q) can be arbitrarily small,

leading to a large λ. However, considering that edge nodes are

typically evenly distributed on purpose for better coverage in
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a given geographical region, λ should be a reasonably small

constant. Therefore, the approximate ratio is also bounded by

a small constant in real scenarios.

E. Time Complexity and Convergence of ITEM

Theorem 4. ITEM can be finished in O(∆(m2(m+n)+n2))
time, where ∆ is the number of iterations.

Proof. ITEM works iteratively. In each iteration, ITEM first

constructs a flow graph with number of nodes O(m+ n) and

number of vertices O(m2 +n). The number of vertices is the

sum of the number of edge nodes and the number of clients,

as depicted in Figure 4. The number of links is calculated as

follows: For each each client, there is an link to either the

source s or the sink t. So there are in total O(m) source-

or sink-client edges. The number of links between the clients

is O(m2) in the worst case assuming every client interacts

with all others. The number of links between clients and edge

nodes is O(m) as each client has a connection to one of

the edge nodes. The number of links between edge nodes

and the sink is given by O(n). Putting all these together,

the total number of links is bounded by O(m2 + n). After

constructing the flow graph, ITEM applies the state-of-the-art

max-flow algorithms [40], [41] to solve the min-cut problem

on the constructed flow graph, with a time complex linearly

related to product of the number of vertices and the number

of links. Therefore, one iteration of ITEM can finish in time

O((m+ n)(m2 + n)) = O(m2(m+ n) + n2). Consequently,

the time complex of ITEM is O(∆(m2(m+ n) + n2)) where

∆ is the number of iterations.

Theorem 5. ITEM is guaranteed to converge.

Proof. Let us assume the objective value produced by ITEM in

iteration t is denoted by E(t). It follows that E(t) > E(t+1)
since ITEM aims to reduce the objective if possible in every

iteration; otherwise ITEM will terminate. Thus, for all ζ > 0
there always exists t such that |E(t)−E′| < ζ where E′ is a

constant between E∗ and 2λE∗ + ǫ as given by Theorem 3.

Formally, we have ∀ζ > 0, ∃T ∈ N : |E(t)−E′| < ζ, ∀t > T.
This completes the proof.

F. Handling Hard Placement Constraints

The co-location cost in the model already prevents an edge

node from hosting too many SEs. Nevertheless, the proposed

algorithm can be extended to the case where SE placement has

some hard constraints due to hardware limitation or privacy

concerns, e.g., certain SEs can only be placed on a subset of

the edge nodes. During the expansion move (on edge node q
for instance), we set xu = 0 for all the clients that cannot be

placed on q and we trim the objective function accordingly.

Thus, solving the induced graph cut problem will only provide

decisions for the rest clients and the placement constraints will

be satisfied in the final placement generated by ITEM.

Our proposed algorithm can also be extended to the case

where edge nodes have hard constraints on the resource ca-

pacity. For example, we can restrict the number of SEs placed

on each edge node. Such a restriction can be incorporated

in every expansion move where we restrict the number of

SEs to be moved to the target edge node. The minimum

s-t cut problem then becomes the minimum k-size s-t cut

problem where the size of one of the graph components after

the cut is restricted within k. While the minimum k-size s-

t cut problem is NP-hard, Zhang has proposed an efficient

algorithm which achieves a constant approximation ratio [43].

This algorithm can be adapted to solve our problem. Note

that such hard capacity constraints on edge nodes can be

heterogeneous among edge nodes as the constraint for each

edge node is treated separately in expansion moves.

IV. ONLINE ALGORITHM

This section focuses on extending ITEM to support online

cases where clients are very likely mobile and placement

decisions have to be adapted continuously.

A. Model Extensions

To properly characterize the online SE placement problem,

we first introduce some extensions to our model. We consider a

system where time is fragmented into time slots t = {1, 2, ...}
of equal length. Considering the nature of collaborative edge

applications, a minimum time slot could be in length of

minutes. Within each time slot, the system is considered static,

i.e., clients remain at their current location. Clients will only

change their location across time slots.

With the time dimension introduced, many of the parameters

in our model can be made time-varying. For the ease of

expression, we focus on the client location in particular. Other

time-varying parameters can be easily incorporated. We use

pu,t to denote the edge node that hosts the SE of client u at

time t, p∗u,t to denote the location of client u at time t, mp,t to

denote the number of SEs placed on edge node p at time t, and

δp,t to denote the status of edge node p at time t. We assume

the client mobility is random and the underlying distribution

for p∗u,t is unknown a priori. Consequently, the total cost of

the system at time t can be written as

E(t) = EA(t) + EB(t) + ED(t) + EC(t)

=
∑

p∈P

a(p)δp,t +
∑

u∈U

bu(pu,t) +
∑

u∈U

υDfud(p
∗
u,t, pu,t)

+
∑

(u,v)∈L

υDfu,vd(pu,t, pv,t)

+
∑

p∈P

(c1(p)mp,t + c2(p)δp,t). (39)

While the above equation can be optimized separately in every

time slot using the ITEM algorithm we proposed, one fact

cannot be omitted, which is that the placement decision for a

given SE may not be consistent across time slots. This brings

up the issue of migrating SEs. When an SE of a client has

to be migrated from one edge node to another, the experience

of the corresponding client may be interrupted, waiting for

the system to restore data and to sync states. For the clients

that have changed their location across time slots the impact

of this interruption may be under expectation. However, such

an interruption can result in a very unpleasant experience
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Algorithm 3 INCU – Incremental Updates

1: t← 1;

2: while true do

3: Ût = {u ∈ U | p∗u,t = p∗u,t−1};
4: Ǔt = {u ∈ U | p∗u,t 6= p∗u,t−1};
5: flag← true;

6: while flag = true do

7: for q ∈ P do

8: pt ← {pu,t | u ∈ U};
9: p̂

q
t ← {pu,t | u ∈ Ût}; ⊲ Static clients

10: p̌
q
t ← EXPANSION(pt, p̂

q
t , q); ⊲ Expansion

11: p
q
t = p̂

q
t ∪ p̌

q
t ;

12: if E(pq
t ) < E(pt) then ⊲ Improvement found

13: pt ← p
q
t ;

14: else

15: flag← false;

16: t← t+ 1;

to clients that remain static (referred to as “static clients”

hereafter) and are continuously using the service.

B. Incremental Updates

Following the above argument we propose an algorithm for

the online SE placement problem. The rationale behind the

algorithm design is as follows: We must limit the interruption

to the static clients as much as possible. Ideally, we do not

allow the placement decision for static clients to change across

time slots. This leads to the idea of incremental updates,

where we simply fix the placement for the static clients in

the expansion move and only consider the re-placement of the

clients that have changed their locations applying the ITEM

algorithm. We denote by Ût and Ǔt the set of static clients

and the set of clients that have moved at time t, respectively.

The pseudocode of the algorithm (namely INCremental

Updates, INCU) is listed in Algorithm 3. The main procedure

is similar to that of ITEM. At the beginning of a time slot

t, we obtain client locations p∗u,t and calculate the sets Ût

and Ǔt. Then, we carry out the iterative expansion moves

to improve the placement as done in ITEM. Note that the

function EXPANSION(pt, p̂
q
t , q) in line 10 takes one more

argument and is slightly different from its original form shown

in Algorithm 2. Before we construct the auxiliary graph Gt,

we fix all the values for p̂
q
t in the objective function E(t)

and remove p̂
q
t from the free variables. Consequently, the

expansion move will only be applied on the variables pqu,t for

u ∈ Ǔt. Over time, the placement is incrementally improved

according to the client movement situation.

C. Online Algorithm Design

The online algorithm proposed above could achieve reason-

able performance when the mobility of clients is limited (as

shown in Figure 9). However, it can be expected that over time

the performance loss will accumulate and finally we will reach

a point where paying the penalty for reconfiguring the system

(i.e., possibly migrating the SEs for static clients) outperforms

keeping the incremental updates done by INCU. Now, we

analyze when such a point will be reached, based on which

we devise a more performant online algorithm.

We use ITEM(t) to denote the total cost produced by

the ITEM algorithm and INCU(t) to denote the total cost

produced by INCU given the instance at time t. The per-

formance loss of INCU is defined as e(t) = |INCU(t) −
ITEM(t)|/ITEM(t). The accumulative performance loss is

given by h(t) =
∑t

i=1 e(t) = h(t − 1) + e(t). We assume

that h(t) has been upper-bounded by a constant factor θ > 0,

meaning that it is very undesirable that the accumulated

performance loss h(t) is beyond the threshold θ, reflecting the

stringent performance requirement set possibly by a service

level agreement (SLA). We say that the system is stable when

h(t) ≤ θ and unstable otherwise. In the unstable case, a

large penalty ω (ω > 0) has to be paid compensating for

the performance constraint violation. Our goal is to delay the

application of ITEM as much as possible, while avoiding such

violations. The rationale behind this is that applying ITEM

is costly as some of the SEs need to be migrated incurring

interruptions to static clients as well as additional network

cost. To this end, we define the following reward function

r(t) =

{

φt, h(t) ≤ θ,

−ω, h(t) > θ.
(40)

This reward function represents that if the system is stable

(and INCU is applied) we receive the reward of φt (φ > 0)

that is proportional to the elapsed time during which the

system stays stable; we pay the penalty of ω otherwise. Our

problem becomes to decide when to apply ITEM such that

the expected reward is maximized. We notice that this problem

actually corresponds to a case of the optimal stopping problem.

Inspired by this observation and following the results from

optimal stopping theory [44], we have the following theorem.

Theorem 6. The expected reward is maximized when ITEM

is applied at time t such that it satisfies

φt ≥
(φ+ ω)Fe(θ − h(t))− ω

1− Fe(θ − h(t))
, (41)

where Fe(·) is the cumulative distribution function of e(t).

Proof. Note that the mobility is assumed to be a random

variable and therefore, e(t) and h(t) are all random variables.

We denote by P (h(t) ≤ θ) the probability that h(t) ≤ θ. We

have the expected reward at time t as

E(r(t)) = φtP (h(t) ≤ θ)− ω(1− P (h(t) ≤ θ))

= (φt+ ω)P (h(t) ≤ θ)− ω.
(42)

Given the series of performance loss observations e(1), ..., e(t)
denoted as ~e(t), the expected reward at time t+1 is given by

E[r(t+ 1) | ~e(t)]

= (φt+ φ+ ω)P (h(t+ 1) ≤ θ)− ω

= (φt+ φ+ ω)P (h(t) + e(t+ 1) ≤ θ | ~e(t))− ω

= (φt+ φ+ ω)P (e(t+ 1) ≤ θ − h(t) | ~e(t))− ω

= (φt+ φ+ ω)Fe(θ − h(t))− ω.

(43)
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Algorithm 4 OPTS – Optimal Stopping

1: t← 1;

2: while true do

3: e(t)← |INCU(t)− ITEM(t)|/ITEM;

4: h(t)← h(t− 1) + e(t);
5: Fe(·)← KDE(~e(t)); ⊲ Obtain the CDF

6: if Fe(θ − h(t)) > (φt+ ω)/(φ(t+ 1) + ω) then

7: return INCU(t); ⊲ Incremental update

8: else

9: return ITEM(t); ⊲ Complete update

10: t← t+ 1;

Assume at time t the expected reward is maximized and

we apply ITEM at the beginning of time slot t. It follows

that E(r(t + 1) | ~e(t)) ≤ r(t) = φt. Therefore, we have

E[r(t+1) | ~e(t)] = (φt+φ+ω)Fe(θ−h(t))−ω ≤ φt, from

which we derive φt ≥ (φ+ω)Fe(θ−h(t))−ω

1−Fe(θ−h(t)) .

The above theorem provides us the insight for an online

algorithm design. The pseudocode of the algorithm (namely

OPTimal Stopping, OPTS) is listed in Algorithm 4. First, we

apply ITEM for an initial optimized SE placement. Hereafter

in every time slot, we check whether Equation (41) can be

satisfied (line 6). If so, we apply ITEM again to reconfig-

ure the system; otherwise, we simply apply INCU to carry

out incremental updates. The cumulative distribution function

Fe(·) can be obtained by smoothing the empirical cumulative

distribution function using kernel density estimation (line 5).

The time complexity of OPTS is given by O(∆(m2(m +
n) + n2)). As we can see in Algorithm 4, the most time

consuming components are KDE, INCU, and ITEM. KDE

takes a constant amount of time if we keep a limited number

of history records. INCU applies the same logic as ITEM,

but with a reduced set of users. Thus, its time complexity is

upper bounded by that of ITEM. Overall, the time complexity

of OPTS is dominated by ITEM.

The deployment of ITEM and OPTS can be done on top of

the edge management frameworks such as KubeEdge2 within

an geographic region like a city. For example, the algorithm

will be run at the EdgeController component of KubeEdge.

The EdgeController obtains the necessary parameters required

by our algorithms by monitoring the edge environment with

the MetaManager component.

V. EVALUATION

With real-world data we validate the performance of ITEM

and OPTS. All the experiments were conducted on a Linux

server with an Intel Core i9-9940X CPU and 64GB DRAM.

A. Offline Performance

Dataset. We focus on social VR as it is representative

for collaborative edge applications. Unfortunately, there is

no available dataset for social VR applications which we

can use directly. To overcome this limitation, we follow the

“workload composition” method proposed in [45] and decide

2KubeEdge edge computing framework: https://kubeedge.io/en/

(a) Los Angeles (b) New York City

Fig. 5. Location of Starbucks shops (i.e., location for envisioned edge nodes)
and distribution of Twitter clients in the selected two cities.

(a) CDF of client interaction (b) CDF of involved neighbors

Fig. 6. Distribution of client interaction (i.e., read and write) in the
synthesized data. (a) shows that the y × 100% of interactions are from
x×100% most interactive clients. (b) shows that y×100% of clients involve
at most x× 100% of her neighbors in her interactions.

to use multiple datasets with relevant attributes to compose a

reasonable dataset for our target application. In particular, we

obtain a social network dataset by crawling the Twitter website

to emulate the user interactions in social VR. Our dataset

contains a Twitter social graph as well as client locations

in GPS coordinates. We select two major cities in the U.S.,

namely Los Angeles and New York City, and we prune the

dataset keeping the clients from the two cities. The two cities

have quite different client distributions which is more uniform

in Los Angeles and is more concentrated in New York City

(see Figure 5). For the locations of envisioned edge nodes, we

decide to use the locations of the Starbucks due to the fact that

Starbucks shops in a city usually provide a decent coverage

for the clients. In addition, the distribution of Starbucks shops

actually follows the population density, making them perfect

locations for edge nodes deployment in the future.

The dataset pruned for Los Angeles (denoted by Twitter-

LA) contains 7553 clients in total. We keep the relationship

of the clients as is in the Twitter social graph. Although the

frequency of client interaction is not available with the used

dataset, we can actually synthesize it following the real-world

distributions revealed by [46]. The CDFs of the synthetically

generated frequencies of client interaction (including both

“read” and “write”) are depicted in Figure 6(a). We obtain

the locations of all the Starbucks shops in the city of Los

Angeles and there are in total 105 shops considered, as shown

in Figure 5(a). We assume that each Starbucks shop will be

equipped with an edge node that is attached to its AP. The

https://kubeedge.io/en/
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network delay between any two Starbucks APs is measured

by their geographical distance. We assume that each client is

in the vicinity of the Starbucks shop that is closest to her.

The dataset pruned for New York City (denoted by Twitter-

NYC) contains 6068 clients and we synthesize the frequency

of client interaction following the same procedure as above

(see Figure 6(b)). The number of considered Starbucks shops

in New York is 117 in total, as illustrated in Figure 5(b).

Settings. Our implementation of ITEM is based on a max-

flow implementation detailed in [47]. The activation cost for

each of the edge nodes is generated randomly following a

uniform distribution to incorporate the heterogeneity of edge

nodes with respect to both the hardware specification and

physical location. For the placement cost, we assume that

there are three different price levels and the ratio between

the base prices of adjacent levels is set to 2. This is to

represent the heterogeneity in the cost of using an edge

node in different areas in the city. The actual placement

price for each client placing her SE on an edge node is

generated following a normal distribution with the average

base and standard deviation 0.5×base. This is inspired by

the Gaussian distribution of hourly electricity price in some

US cities [48]. We propose to mimic the same trend for

edge resource prices since both electricity and edge resources

are limited shared resources among a large population. The

communication frequency fu of each client is set to be the sum

of frequency of access originated from client u. For the co-

location cost, we randomly generate the coefficients following

a uniform distribution. We first compare with two baseline

solutions of interest: Random (randomly generated placement)

and Greedy (the greedy placement where SEs are placed with

closest proximity). We also choose the theoretical optimum as

our baseline. However, due to the large scale of the dataset,

we were not able to obtain the values for the optimum in

reasonable time. We will report the comparison against the

theoretical optimum in the next experiment where we use a

smaller-scale dataset. While the cost configuration is out of the

scope of this paper, we conduct the comparison under a variety

of cost conditions by tuning the parameters in the cost model:

(1) Only the operation costs (OP-only) where the parameters

in ED and EC are set to zero; (2) Only the service quality

costs (SQ-only) where the parameters in EA and EB are set

to zero; (2) The operation costs dominate (OP-dom) where

we set the operation costs at roughly the level of 10× of the

service quality costs; (3) The service quality costs dominate

(SQ-dom) where we set the service quality costs at roughly the

level of 10× of the operation costs; (4) All costs are significant

(All) where operations costs and service quality costs are set

at roughly the same level.

Results. The performance of ITEM, compared with Random

and Greedy, is validated in Figure 7. All the results are ob-

tained by averaging five independent runs and are normalized

to the results of ITEM. As we can see that, ITEM outperforms

both Random and Greedy and the gain achieved by ITEM is

more than 2× in general under all considered cost conditions

in both the Twitter-LA and Twitter-NYC datasets. This means

that ITEM generalizes well and can handle most realistic

scenarios. Figure 8 shows the converging speed of ITEM in

(a) Los Angeles (b) New York City

Fig. 7. Performance of ITEM under varying cost conditions.

(a) Los Angeles (b) New York City

Fig. 8. Convergence of ITEM on different datasets.

both the Twitter-LA and the Twitter-NYC scenarios with five

independent runs each. In general, ITEM converges very fast;

it reduces the cost significantly in the first few iterations and

converges within five iterations in most cases.

B. Online Performance

Dataset and settings. For the online case, mobility is of

concern. We adopt the same “workload composition” tech-

nique as discussed before. We use the Rome Taxi dataset and

synthesize social networks with fitted client interactions. The

time granularity is set to one minute since this is the finest time

granularity we could use to derive a complete set of data points

from the used dataset. The driving speed limit in Rome (urban

area) is 50 km/h which translates into around 830 meters per

minute. That is, during one minute, the movement of the user

is below the typical communication range of an access point

in networks like 4G and even 5G [49]. We choose a 6-hour

period (15h to 20h inclusive on date Feb 12, 2014) from the

dataset. The number of clients varies from hour to hour but

is generally around 300 during the considered time period.

The clients are moving around the city over time and the time

granularity is set to one minute. We simulate a social graph on

these clients following a power-law distribution with exponent

2.5 and we generate the frequency of client interaction using

the same approach as for Twitter-LA. We envision an edge

computing system with 15 edge nodes that are deployed in the

city of Rome and the locations of the edge nodes are chosen

from the major metro stations in Rome [25].

We implement a discrete-time simulator where at the begin-

ning of each time slot (e.g., each minute here) we obtain the

set of clients that have moved and then, we invoke the ITEM

algorithm on those clients to obtain new placement decisions.

We choose parameters that are generated following the same
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Fig. 9. Performance comparison of online service placement solutions.

(a) CDF (b) Accumulative error

Fig. 10. (a) Empirical CDF obtained by the KDE method. (b) Performance
of OPTS with either INCU and ITEM applied in each decision round.

settings as in the offline case and compare the results with that

of Random, Greedy, and Optimal (theoretical optimal results).

Performance comparison. Figure 9 depicts the results for

online performance evaluation. The experiments are done

independently for 6 hours as described in the settings. We only

show the hour of 16h as the tests in other hours show similar

behavior. All the values in the plots are normalized to the

theoretical optimum and are averaged among five independent

runs. As we can see both INCU outperforms both Random

and Greedy as expected and can achieve an overall cost

reduction of around 130% and 50% under any circumstances

in the simulated scenario. ITEM performs very closely to the

theoretical optimum – the gap is within 5% (see the magnified

area in Figure 9). The performance of the algorithms are stable

over all the time slots we consider in this experiment.

Performance of OPTS. We take the dataset of 16h and

illustrate the accumulative error incurred gradually through

the 60 mins. The empirical CDF of the error obtained by

the KDE method is depicted in Figure 10(a). We set the

threshold θ = 10%, meaning that a large penalty (set as

approximately two times the normal average total cost) is paid

when the error exceeds this threshold. Figure 10(b) shows the

performance of OPTS. With incremental updates by INCU the

error accumulates gradually. Overall, OPTS does a great job

in controlling the risk of threshold violation. OPTS always

makes the re-balance decision when the error is close to the

threshold. On the other hand, it never makes the re-balance

decision too late such that the error exceeds the threshold. This

confirms that the OPTS can achieve the best while respecting

performance requirement constraints. However, OPTS only

invokes ITEM for around 20 times in the whole 60 mins,

resulting in over 67% reduction on the need of full updates.

Fig. 11. Running time comparison between INCU and ITEM.

C. Running Time

We also measure the running time and the results are shown

in Figure 11. We make a comparison between ITEM and

INCU. In this experiment, we use the same edge node setting

as in the last experiment and we synthesize the social network

with various numbers of clients. As we can observe, when the

number of clients is small, ITEM and INCU finish in a similar

amount of time. With the increase of the number of clients,

ITEM increases much faster than INCU and the gap between

INCU and ITEM becomes quite significant. Given that the

time slot for SE placement is usually at the scale of minutes,

both algorithms should be practical.

VI. RELATED WORK

Data placement for online social networks. Much work

has been carried out on optimizing cost or performance

via data placement or replication for online social networks

[28]–[31]. Jiao et al. propose a cost-effective data placement

policy that can guarantee QoS in online social networks [28].

They also investigate the problem by taking into account the

social interactions among users [30]. Yu and Pan propose an

associated data placement scheme to improve the colocation

of associated data and localized data serving [29]. Zhou et al.

explore the joint placement and replication of social network

data with the goal of minimizing network traffic [31].

Resource management in edge computing. In the presence

of multiple edge clouds, resource management is of high

importance as it directly dictates service quality and system

efficiency. Research efforts have been made mostly on resource

allocation and job scheduling [18]–[25]. Jia et al. study the

load balancing among multiple edge clouds in [19]. Mukherjee

et al. explore to reduce power and latency in multi-cloudlet

environments via an optimal cloudlet selection strategy [20].

Tong et al. discuss workload placement for delay minimization

in a hierarchical edge computing architecture [21]. Wang et al.

[22] and Urgaonkar et al. [23] focus on stochastic frameworks

for optimizing dynamic workload migration based on Markov

Decision Processes (MDPs) and Lyapunov optimization tech-

niques. Tan et al. study online job dispatching and scheduling

in edge clouds [24]. Wang et al. propose an online mobility-

oblivious resource allocation algorithm for edge computing

[25]. Most recently, we have seen significant work on resource

allocation, service placement, and request routing [50]–[54].

None of the existing models are able to characterize the joint

impact of user interactions in collaborative edge applications
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and resource contention in edge nodes for service placement,

which is captured in our model. Moreover, we incorporate the

economic effects on activating and using edge nodes.

VII. CONCLUSION

In this paper, we conducted a formal study of the service

placement problem for collaborative edge applications in a

distributed edge network. We characterize the major challenges

with a comprehensive cost model and propose a novel algo-

rithm based on iteratively solving a series of minimum graph

cuts. We also extend the algorithm to support the online case

based on the optimal stopping theory. The performance of the

proposed algorithms is confirmed by extensive experiments.

As edge computing is picking up and more applications are

developed for the edge environment, the solution provided

in this paper will serve as a baseline and will foster future

exploration in this direction.
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agnostic online resource allocation for edge computing,” TMC, vol. 18,
no. 8, pp. 1843–1856, 2019.

[27] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, “Scaling social
media applications into geo-distributed clouds,” IEEE/ACM Transactions

on Networking, vol. 23, no. 3, pp. 689–702, 2015.
[28] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social

networks on geo-distributed clouds,” in ICNP, 2012.
[29] B. Yu and J. Pan, “Location-aware associated data placement for geo-

distributed data-intensive applications,” in INFOCOM, 2015.
[30] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for

multi-cloud socially aware services,” in INFOCOM, 2014.
[31] J. Zhou and J. Fan, “JPR: exploring joint partitioning and replication

for traffic minimization in online social networks,” in ICDCS, 2017.
[32] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion

mapping in a cloud,” in PODC, 2011.
[33] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-

work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
2012.

[34] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market mechanism for
edge emergency demand response via cloudlet control,” in INFOCOM,
2019.

[35] F. Khan, “The cost of latency,” https://www.digitalrealty.com/blog/the-
cost-of-latency, 2015.

[36] J. Saldana and M. Suznjevic, Traffic of Online Games, IETF 87, 2013.
[37] S. Lim, J. Huh, Y. Kim, G. M. Shipman, and C. R. Das, “D-factor: a

quantitative model of application slow-down in multi-resource shared
systems,” in SIGMETRICS, 2012.

[38] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine
performance: challenges and approaches,” SIGMETRICS PER, vol. 37,
no. 3, pp. 55–60, 2009.

[39] J. Krarup and P. M. Pruzen, “The simple plant location problem: Survey
and synthesis,” Eur. J. Oper. Res., vol. 12, pp. 36–81, 1983.

[40] J. B. Orlin, “Max flows in o(nm) time, or better,” in STOC, 2013.
[41] V. King, S. Rao, and R. E. Tarjan, “A faster deterministic maximum

flow algorithm,” J. Algorithms, vol. 17, no. 3, pp. 447–474, 1994.
[42] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate

energy minimization with label costs,” in CVPR, 2010.
[43] P. Zhang, “A new approximation algorithm for the unbalanced min s-t

cut problem,” Theor. Comput. Sci., vol. 609, pp. 658–665, 2016.

https://www.oculus.com/facebookhorizon/
http://openedgecomputing.org


IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, JANUARY XXXX 14

[44] Y. S. Chow, H. Robbins, and D. Siegmund, The Theory of Optimal

Stopping. Houghton Mifflin, 1991.
[45] O. Kolosov, G. Yadgar, S. Maheshwari, and E. Soljanin, “Benchmarking

in the dark: On the absence of comprehensive edge datasets,” in USENIX

HotEdge, 2020.
[46] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “User

interactions in social networks and their implications,” in EuroSys, 2009.
[47] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision,” IEEE

TPAMI, vol. 26, no. 9, pp. 1124–1137, 2004.
[48] A. Qureshi, R. Weber, H. Balakrishnan, J. V. Guttag, and B. M. Maggs,

“Cutting the electric bill for internet-scale systems,” in SIGCOMM,
2009.

[49] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. D. Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5g: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE JSAC,
vol. 35, no. 6, pp. 1201–1221, 2017.

[50] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” JSAC, vol. 36, no. 8, pp. 1751–
1767, 2018.

[51] L. Jiao, L. Pu, L. Wang, X. Lin, and J. Li, “Multiple granularity online
control of cloudlet networks for edge computing,” in SECON, 2018.

[52] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in ICDCS, 2018.

[53] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in INFOCOM, 2019.

[54] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in INFOCOM, 2019.

Lin Wang is an Assistant Professor at VU Am-
sterdam, The Netherlands and an Adjunct Profes-
sor at TU Darmstadt, Germany. He received his
Ph.D. degree in Computer Science with distinc-
tion from the Institute of Computing Technology,
Chinese Academy of Sciences. He has been a
visiting researcher at IMDEA Networks Institute,
Spain, from 2012-2014, a research associate at SnT
Luxembourg from 2015-2016, and a group leader
at TU Darmstadt, Germany from 2016-2018. His
current research interests include edge computing,

edge storage, intermittent computing, and in-network computing. He received
the Athene Young Investigator award from TU Darmstadt in 2018 and has
been a PI of the collaborative research center MAKI funded by the German
Science Foundation (DFG).

Lei Jiao is an Assistant Professor at the Department
of Computer and Information Science, University
of Oregon, USA. He received the Ph.D. degree
in computer science from University of Göttingen,
Germany. Previously he worked as a member of
technical staff at Nokia Bell Labs in Dublin, Ireland
and also as a researcher at IBM Research in Beijing,
China. He is interested in exploring optimization,
control, learning, mechanism design, and game the-
ory to manage and orchestrate large-scale distributed
computing and communication infrastructures, ser-

vices, and applications. He has published papers in journals such as JSAC,
TON, TMC, and TPDS, and in conferences such as MOBIHOC, INFOCOM,
ICNP, ICDCS, SECON, and IPDPS. He served as a guest editor for IEEE
JSAC Series on Network Softwarization and Enablers. He was on the
program committees of many conferences including MOBIHOC, INFOCOM,
ICDCS, and IWQoS, and was the program chair of multiple workshops with
INFOCOM and ICDCS. He was also a recipient of the Best Paper Awards
of IEEE CNS 2019 and IEEE LANMAN 2013, and the 2016 Alcatel-Lucent
Bell Labs UK and Ireland Recognition Award.

Ting He (SM’13) received the B.S. degree in com-
puter science from Peking University, China, in 2003
and the Ph.D. degree in electrical and computer
engineering from Cornell University, Ithaca, NY, in
2007. Dr. He is an Associate Professor in the School
of Electrical Engineering and Computer Science at
Pennsylvania State University, University Park, PA.
Her work is in the broad areas of computer network-
ing, network modeling and optimization, and statis-
tical inference. Dr. He is a senior member of IEEE.
She is an Associate Editor for IEEE Transactions on

Communications (2017-2020) and IEEE/ACM Transactions on Networking
(2017-2021), and an Area TPC Chair of IEEE INFOCOM (2021). She was
the Membership co-chair of ACM N2Women in 2013-2014 and was listed in
“N2Women: Rising Stars in Networking and Communications” in 2017. She
received the Research Division Award and multiple Outstanding Contributor
Awards from IBM, the Most Collaboratively Complete Publications Award
from ITA, the Best Paper Award at ICDCS 2013, the Outstanding Student
Paper Award at ACM SIGMETRICS 2015, and the Best Student Paper Award
at ICASSP 2005.

Jun Li is a Professor in the Department of Computer
and Information Science and founding director of the
Center for Cyber Security and Privacy at the Univer-
sity of Oregon. He received his Ph.D. from UCLA
in 2002 (with Outstanding Doctor of Philosophy
honor), M.E. from Chinese Academy of Sciences
in 1995 (with Presidential Scholarship), and B.S.
from Peking University in 1992, all in computer
science. His research is focused on networking,
distributed systems, and network security, with 100+
peer-reviewed publications. Currently he is research-

ing Internet routing and architecture, software-defined networking, social
networking, cloud computing, Internet of things, blockchain, cryptocurrency,
and various security topics in these areas. He has served on US National
Science Foundation research panels and more than 70 international technical
program committees, including chairing six of them. He currently serves
on the editorial board of IEEE Transactions on Dependable and Secure
Computing and a few conference or workshop steering committees. He is
a senior member of ACM and IEEE and an NSF CAREER awardee in 2007.

Henri Bal is a Full Professor and heads a research
group on High Performance Distributed Computing
at the Vrije Universiteit in Amsterdam. He studies
parallel and distributed programming systems in
combination with real-world applications. His group
produced programming environments such as the
Orca language, MagPIe, Ibis, Satin, JavaGAT, and
SWAN. He is the winner of the Euro-Par 2014
Achievement Award, member of the Informatics
Section of the Academia Europaea, scientific direc-
tor of the ASCI research school, and coordinator of

the DAS infrastructure. He is past program chair of the HPDC and CCGrid
conferences and author of three books, including Modern Compiler Design.
He has a PhD in Computer Science from Vrije Universiteit (1989) and a MSc
in Mathematics from Delft University of Technology (1982).


	Introduction
	The Model
	System Model
	Cost Models
	Problem Formulation
	Hardness

	Algorithm Design
	Algorithm Design Overview
	Transforming the Objective Function
	Optimizing Expansion Move via Minimizing Graph Cuts
	Approximation Ratio
	Time Complexity and Convergence of ITEM
	Handling Hard Placement Constraints

	Online Algorithm
	Model Extensions
	Incremental Updates
	Online Algorithm Design

	Evaluation
	Offline Performance
	Online Performance
	Running Time

	Related Work
	Conclusion
	References
	Biographies
	Lin Wang
	Lei Jiao
	Ting He (SM’13)
	Jun Li
	Henri Bal


