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Abstract— To improve the performance of data-intensive appli-
cations, existing datacenter schedulers optimize either the place-
ment of tasks or the scheduling of network flows. The task
scheduler strives to place tasks close to their input data (i.e.,
maximize data locality) to minimize network traffic, while
assuming fair sharing of the network. The network scheduler
strives to finish flows as quickly as possible based on their
sources and destinations determined by the task scheduler, while
the scheduling is based on flow properties (e.g., size, deadline,
and correlation) and not bound to fair sharing. Inconsistent
assumptions of the two schedulers can compromise the overall
application performance. In this paper, we propose NEAT+, a
task scheduling framework that leverages information from the
underlying network scheduler and available compute resources
to make task placement decisions. The core of NEAT+ is a
task completion time predictor that estimates the completion
time of a task under given network condition and a given
network scheduling policy. NEAT+ leverages the predicted task
completion times to minimize the average completion time of
active tasks. Evaluation using ns2 simulations and real-testbed
shows that NEAT+ improves application performance by up to
3.7x for the suboptimal network scheduling policies and up to
33% for the optimal network scheduling policy.

Index Terms— Datacenter networks, network scheduling,
task placement, cloud computing.

I. INTRODUCTION

DATA transfer time has a significant impact on task com-
pletion times within a datacenter because most datacenter

applications (such as MapReduce [19], Pregel [30], MPI [24],
Dryad [27]) are data-intensive and they need to access data
that are distributed throughout the network. For example, for
MapReduce, 30% task completion time is spent on transferring
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data across the network [39]. For large commercial datacen-
ters, the transfer of shuffle data is the dominant source of
network traffic [3]. In Facebook [39] MapReduce clusters,
20% jobs are shuffle-heavy (i.e., generate a large amount
of shuffle data), and in Yahoo! clusters [13] this goes up
to 60%. The network congestion caused by shuffle data is
a key factor that degrades the performance of MapReduce
jobs [18]. Therefore, data transfer time in datacenter is critical
for improving application performance.

Prior work on minimizing data transfer time falls into two
categories: task placement ( [3], [8], [28], [29], [34], [39])
and network scheduling ( [6], [9], [15]–[17], [20], [26], [31],
[32], [41], [42]). The idea of task placement is to place
compute tasks close to input data so that data locality is
maximized and network traffic is minimized [8], [28], [39].
The idea of network scheduling is to schedule the flows or
groups of flows (i.e., coflows) generated by tasks, at shared
links, based on given flow properties (such as size, deadline,
and correlation among flows) and given task placement to
minimize flow completion times [6], [17], [26], [31], [32]. The
limitation of prior task placement policies is that they design
traffic matrix assuming fair sharing of network bandwidth
and ignore the priorities assigned to different flows by the
network scheduler; meanwhile, network schedulers schedule
flows based on flow priorities (such as size or deadline) and
the flow completion time of a low priority flow can increase
if placed on a path sharing links with high priority flows. The
limitation of network schedulers is that the source/destination
of each flow is independently decided by the task schedulers
and not necessarily optimal.

In this paper, we propose NEAT+, a Network-schEduling-
Aware Task placement framework that leverages network
scheduling policy, network state and available compute
resources (+) in making task placement decisions for
data-intensive applications. The placement by NEAT+ coupled
with a properly selected network scheduling policy ensures
that tasks are finished as quickly as possible. The intuition
behind NEAT+ is that a good placement of data-intensive
tasks should spread the flows to minimize the sharing of
network links and balance load across the nodes. When
sharing is inevitable, however, the preferred placement strategy
depends on how the network schedules flows, as illustrated by
the following example.

Motivating Example

Let us consider a simple scenario in Figure 1, where we
want to place a task R that needs to read data from task M
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Fig. 1. Network scheduling aware placement.

running on node 2 onto candidate hosts node 1 or node 3.
At the current time, the network has one flow with remaining
size of 4 Gb on path 2 → 3 and requires four more seconds
(on 1 Gbps link) to finish if running alone. There are two
other flows on path 2 → 1, each of remaining size 10 Gb,
thus requiring ten more seconds if running alone. Suppose
that the input data of candidate task R is of size 5 Gb and our
goal is to finish the task as quickly as possible. Assuming
First Come First Serve scheduling (FCFS) in the network,
we will place task R on node 3, as it provides the smaller
completion time of 9 seconds as compared to 25 seconds
when placed on node 1, because flow R will not be scheduled
until the existing flows finish data transfer. Assuming fair
scheduling (Fair) in the network, we will place task R on
node 3, as it requires 9 seconds to complete flow R on node 3
compared to 15 seconds on node 1. Assuming the network
uses shortest remaining processing time (SRPT) scheduling,
we will place task R on node 1, as it can finish in 5 seconds
on node 1 by preempting both the existing flows. We assume
flows with the same priority share the network fairly as
in existing solutions [6], [31]. However, if the goal is to
minimize the increase in total (i.e., sum) flow completion
time of all the active flows in the network, then under SRPT,
the scheduler will choose node 3 to minimize the increase
in completion time of flows in the network (i.e., completion
time of new flow plus increased completion times of existing
flows). We see that the optimal task placement in a network
can vary depending on the network scheduling policy and
the network performance metric. Similarly, available compute
resources can significantly impact flow performance.

NEAT+ Overview

NEAT+ leverages these insights in its design and provides
a task placement framework to minimize the average flow
completion time (AFCT) in the network. NEAT+ employs a
task performance predictor that predicts the completion time
of a given task under an arbitrary network scheduling policy.
NEAT+ is quite pluggable in terms of better resource or appli-
cation models and predictors. NEAT+ makes task placement
decision in two steps: first, it predicts task performance by
hypothetically placing a task on each candidate node and

Fig. 2. NEAT+ Architecture.

analyzing its performance based on the network scheduling
policy and the network state. Next, it selects a node for the task
based on the predicted task completion time and a node state,
that characterizes the sizes of existing flows. The proposed
task placement mechanism focuses on network performance
in task placement decisions and additionally uses node prop-
erties (e.g., CPU, memory) to determine whether a node is
a candidate host. To realize this idea, NEAT+ addresses two
challenges:

The first technical challenge in designing NEAT+ is to
accurately predict the performance of a task for a given
network state and scheduling policy. We use the completion
time of data transfer, i.e., the flow completion time (FCT) or
the coflow completion time (CCT), to measure the overall task
performance. Compared to network-centric performance met-
rics such as delay, jitter, and available bandwidth, completion
time is task-centric and better models network conditions in
terms of their impact on task performance (§ VI).

The second technical challenge is to efficiently collect
network state information and make placement decisions.
As illustrated in Figure 2, NEAT+ uses a distributed control
framework with two components: a local controller (network
daemon) that maintains a compressed state of all active flows
(or coflows) on each node to predict task completion times,
and a global controller (task placement daemon) that gathers
the predicted task completion times from local controllers to
make task placement decisions. Here, a “node” refers to an
endhost (e.g., server) capable of running tasks. Using the flow
state information, the local controllers predict the FCT/CCT
on edge links (i.e., links directly connected to nodes), based
on which the global controller uses a greedy algorithm to
pick the node whose edge link has the smallest FCT/CCT. To
reduce communications with the local controllers, the global
controller also maintains a states for each node, defined as
the remaining size of the smallest active flow on that node
and the available compute resource, such that only nodes with
preferred states are contacted.

NEAT+ does not require any changes to the network. How-
ever, it requires task information (e.g., size) from applications,
similar to prior works [6], [15], [31], to accurately predict task
completion time. For recurrent workloads, this information can
be inferred by monitoring task execution [29].

NEAT+’s performance is upper-bounded by the underlying
network (flow/coflow) scheduling policy. When the network
scheduling policy is suboptimal (e.g., Fair, LAS), when our
goal is FCT, there is plenty of room for improvement and
NEAT+ is able to significantly improve the task performance;
when the network scheduling policy is near optimal (SRPT),
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the room for improvement is reduced, NEAT+ still achieves
notable improvement for such scenarios.

NEAT+ Evaluation

We evaluate NEAT+ using both a trace-driven simulator
and a 10-machine testbed based on a variety of production
workloads [6], [19] and network scheduling policies such
as DCTCP [5], L2DCT [32], PASE [31], and Varys [17].
We evaluate two other state-of-art task placement policies:
loadAware that uniformly distributes load across all the nodes,
and minDist that always selects a node closest to the input data.
NEAT+ performs 3.7x better than alternative strategies when
the underlying network scheduling policy is Fair (DCTCP [5]),
3x better when the policy is least attained service (LAS)
(L2DCT [32]), and 33% better when the policy is SRPT
(PASE [31]). In both cases, NEAT+ improves performance
by being aware of the network scheduling policy. In particular,
since Fair is the underlying policy in most commercial data-
centers, NEAT+ can significantly improve the performance of
data-intensive applications in majority of cases.

II. LIMITATIONS OF PRIOR ART

A. Related Work

Task Scheduling: State-of-art task schedulers follow the
principle of “maximizing data locality” to minimize data trans-
fer over the network. For the first stage of jobs (e.g., Map),
techniques such as delay scheduling [39] and flow-based
scheduling [28] try to place tasks on the machines or racks
where most of their input data are located. Mantri instead opti-
mizes the data locality while placing reducers [8]. However,
when the data is spread throughout the cluster (e.g., in dis-
tributed file systems like HDFS [10]), the subsequent job
stages (e.g., shuffle phase) have to read data using cross-rack
links, and often suffer from heavy network congestion [14].
To alleviate the problem, techniques like ShuffleWatcher [3]
attempt to localize the Map tasks of a job to one or a few
racks, and thus reduce cross-rack shuffling. However, such
techniques end up increasing the cross-rack transfer of the
input data. A similar idea was exploited in Sinbad [14] to
place the endpoints of flows to avoid congested links, but
Sinbad is for a special type of flows (replicated file system
writes) and is agnostic to the underlying network scheduling
policy. When the input data of a job is known beforehand,
techniques like Corral [29] can be used to pack the input data
to a few racks such that all computation can be performed
on local data. Similarly, many fairness based cluster schedul-
ing frameworks [21]–[23], [25], [36] or straggler mitigation
techniques [7], [8], [33], [40] have been proposed. However,
these works assume fair sharing in the network and does
not consider effect of underlying network scheduling policies.
Another category of works [11], [12] does joint network and
task execution scheduling, however these works assume that
they have knowledge about task arrival times and [12] makes
offline task scheduling decisions. Similarly, [38] proposes to
jointly schedule task placement and flow scheduling. However,
NEAT+ only optimizes task placement and does not introduce
any changes to the flow scheduling.

Fig. 3. Comparison of minDist and loadAware placement under SRPT and
Fair network scheduling policy.

Network Scheduling: Generally, data-intensive jobs spend
a substantial fraction of their execution time on data
transfer [39], and consequently, their performance critically
depends on the performance of network scheduling. In recent
years, a variety of network scheduling systems such as
DCTCP [5], L2DCT [32], PASE [31], Varys [17], and
Baraat [20] have been proposed. Many of these protocols
provide near-optimal data transfer time, but the improvement
to the overall task performance is limited as they do not
optimize the placement of sources/destinations of the flows.
NEAT+ addresses these limitations in two ways: it places the
destinations of flows (via task placement) while taking into
account the underlying network scheduling policy to minimize
the overall data transfer time, and it uses a performance pre-
dictor that captures network state and essence of the network
scheduling policies.

B. Comparative Study

Task placement policies perform differently when used
with different network scheduling policies. To illustrate this,
we compare the performance of two task scheduling policies
under two different network scheduling policies. For task
scheduling policies, we consider: minimum-distance place-
ment (minDist), which places each task to minimize its
distance to the input data, and minimum-load placement
(loadAware), which distributes load across all the nodes. For
network scheduling policy, we consider: DCTCP [5], which
approximates the Fair sharing policy, and PASE [31], which
approximates the shortest remaining processing time (SRPT)
policy in the network.

We simulate a topology of 160 machines, connected using
a folded CLOS topology as in [31]. We configure the links
to have 200μsec RTT and 1 Gbps (edge) or 10 Gbps
(core) bandwidth. We evaluate each combination of the above
task/network scheduling policies under flow demands gener-
ated according to the data-mining workload [6]. Figure 3(a)
and Figure 3(b) show the ratio between the FCT of minDist
and the FCT of loadAware for various flow sizes under the
Fair, and SRPT network scheduling policy, respectively. A bar
with coordinates (x, y) indicates that flows of sizes x have an
FCT ratio of y, where y<1 indicates that minDist outperforms
loadAware and y>1 indicates the opposite.

The results show that when the network follows SRPT
policy (Figure 3(a)), minDist placement works better (ratio
less than 1). In contrast, when the network follows a Fair
policy (Figure 3(b)), loadAware placement works better for
the majority of the flow sizes. The results can be explained
by the following observations: when the network follows

Authorized licensed use limited to: Penn State University. Downloaded on December 17,2020 at 15:33:11 UTC from IEEE Xplore.  Restrictions apply. 



2438 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 4. NEAT+ components.

SRPT policy (Figure 3(a)), short flows preempt long flows,
and receive full link bandwidth. Short flows therefore achieve
near-optimal completion time. We verified it in the FCT logs
but omit the details because of page limitations. After the short
flows complete, more bandwidth becomes available to the long
flows, allowing them to finish quickly. The minDist placement
outperforms minLoad placement because it minimizes the total
network load, defined as sum of the product of the size
and the hop count for each flow. In contrast, when the
network follows the Fair policy (Figure 3(b)), short flows no
longer preempt long flows. The loadAware placement works
better – especially for long flows – because it ensures that
long flows avoid being placed on nodes with existing long
flows. However, Figure 3(b) shows that short flows may suffer
longer FCTs under the loadAware placement compared to
the minDist placement. This usually happens when newly
arriving long flows are placed on nodes with ongoing short
flows, thus increasing the FCTs of short flows. In conclusion,
this experiment demonstrates that the performance of task
placement depends on the underlying network scheduling
policy. Therefore, it is important to design a task placement
framework that takes into account the underlying network
scheduling policy.

III. SYSTEM OVERVIEW

NEAT+, is a Network-schEduling-Aware Task placement
framework that considers the network scheduling policy and
the network state while making task placement decisions.
NEAT+ considers placing both flows and coflows in the
network via placing the tasks on the nodes that act as
destinations of these flows (coflows). The placement frame-
work, coupled with the underlying network scheduling policy
(e.g., Fair, FCFS, LAS, SRPT), ensures that network resources
are properly allocated among tasks to minimize their average
completion time.

NEAT+ uses a centralized architecture to make task place-
ment decisions, as shown in Figure 4. It leverages the
master-slave architecture of existing task scheduling sys-
tems [25], [36] to achieve its functionality in a distributed
fashion. NEAT+ has two components, i) a centralized global
task placement daemon and ii) a distributed per-node network
daemons. The two components exchange information to per-
form network-aware task scheduling.

Network Daemon

NEAT+ network daemon (similar to node manager in
Hadoop) runs on all the nodes (i.e., endhosts) in the network

and uses the completion time of data transfer (FCT for flow,
CCT for coflow) as a metric for predicting task performance.
The prediction is based on the network state, e.g., (resid-
ual) sizes of all active flows, and the network scheduling
policy. Therefore, network daemon performs two functions:
(i) maintaining network information of all the active tasks
on the node (such as the number of flows and their residual
sizes), and ii) predicting the performance of a new task when
requested by the task placement daemon, based on the analysis
in section IV. NEAT+ considers only the edge links for
task performance prediction. Therefore, the task performance
prediction is based on the assumption that only the edge links
are bottleneck in the network and core is congestion free.
As a result NEAT+ needs to maintain flow information at
the end-hosts only and does not require any feedback from
the network.

Task Placement Daemon

NEAT+ task placement daemon makes placement decisions
in two steps: First, it queries the network daemons on nodes
that are valid hosts (determined by node state, CPU and
memory) of a given task for their predicted task performance.
Next, it chooses the best node or subset of nodes for placing
the task using the predicted task completion times and node
states (i.e., the smallest residual flow size of active tasks on
each node). It also caches the node states locally to facilitate
future placement decisions, as discussed below. The node
states cache is updated whenever a new task is placed on the
node or an existing task is completed.

NEAT+ Workflow

As illustrated in Figure 4, when the task placement daemon
receives a request to place a new task (step 1), it identifies
a set of preferred hosts based on local copies of node states
and contacts the respective network daemons to get predicted
performance of the new task (step 2). Each network daemon
maintains the local network state (such as the number and the
sizes of flows starting/ending at the node) and uses this state
together with knowledge of the network scheduling policy to
predict the performance of the new task. The task placement
daemon then gathers this information (step 3) and places the
task on the best of the preferred hosts based on the predicted
performance (step 4).

Discussions: It is worthwhile to clarify a few points. First of
all, NEAT+ is a task placement framework and as such, it does
not impose any changes in the network switches or network
scheduling mechanism. The network congestion is managed by
the underlying network scheduling policy. However, NEAT+
helps to mitigate the network congestion by properly distrib-
uting traffic loads across the network. Moreover, in the current
design, NEAT+ abstracts network as a single-switch topology,
as assumed in earlier works [6], [29]. The single-switch
assumption means that only edge links are the bottleneck
and thus for task completion time (FCT/CCT) prediction,
it only considers edge links. However, such restriction is not
fundamental to NEAT+, and we discuss in Section VII how
it can be extended to other topologies.

In the next two sections, we discuss task performance
prediction and NEAT+ design in more detail.
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IV. TASK PERFORMANCE PREDICTOR

NEAT+ has a pluggable task performance predictor that
can predict the completion time of a given task under an
arbitrary network scheduling policy. An interesting insight of
our analysis is that: for flow-based scheduling, it suffices to
predict FCT according to the Fair policy under mild conditions
even if the underlying policy is not Fair; for coflow-based
scheduling, however, this is generally not true.

From a networking perspective, placing a task onto a server
is equivalent to placing a flow onto a path (or a coflow onto
a set of paths). We now define the objective function for
flow placement; the objective function for coflow placement is
analogous. For flow placement, our goal is to place each flow
onto the path that minimizes the sum (and hence average)
FCT over all active flows. Consider a flow f placed on path
pf with size sf (bits). Let FCT(f, l) denote the completion
time of flow f on link l ∈ pf (i.e., time taken for the flow to
finish transmission over link l). Now consider placing a new
flow f0 onto path pf0 . Let ΔFCT(f, l) denote the increase in
the completion time of f on link l due to the scheduling of f0.
Let F be the set of cross-flows in the network (i.e., flows that
share at least one link with f0). Then the increase in the sum
FCT over all active flows due to the placement of f0 equals

max
l∈pf0

FCT(f0, l) +
∑
f∈F

(
max
l∈pf

(FCT(f, l) + ΔFCT(f, l))

−max
l∈pf

FCT(f, l)
)
, (1)

and the optimal online placement is to place f0 such that (1)
is minimized (note that (1) depends on pf0 ).

The original objective (1) requires calculation of the FCT
before and after placing f0 for every flow f ∈ F and every hop
l traversed by f . To simplify computation, we exchange the
order of summation and maximization to obtain an alternative
objective function

max
l∈pf0

FCT(f0, l) + max
l∈pf0

∑
f∈Fl

ΔFCT(f, l)

≥ max
l∈pf0

⎛
⎝FCT(f0, l) +

∑
f∈Fl

ΔFCT(f, l)

⎞
⎠ , (2)

where Fl is the set of flows traversing link l. Note that (2) is
only an approximation of (1) and thus minimizing (2) is not
guaranteed to minimize the sum FCT. However, as we show
later, the alternative objective (2) has a nice property that it is
invariant, up to a constant scaling, to the network scheduling
policy under certain conditions (see Propositions 4.1 and 4.2),
and the placement that minimizes (2) achieves superior per-
formance in minimizing the FCT for a variety of flows and
network scheduling policies.

For simplicity of analysis, we do not consider the impact
of future task arrivals or task completion on the prediction.
We choose this design in favor of applicability (not requiring
prediction capability) and stability (not moving existing flows)
of NEAT+ design (see remark § V-A1).

A. FCT Prediction for Flow Scheduling

Given a placement of flow f0 and its cross-flows, the FCT
of f0 is determined by the scheduling policy employed by

the network. We therefore study FCT prediction under several
widely-adopted scheduling policies, including FCFS, Fair,
LAS, and SFF. For ease of presentation, we fix a (candidate)
placement and consider the prediction for a given link l
with bandwidth Bl. The key idea of NEAT+ predictor is to
compute the total number of bytes that will be transmitted
across the bottleneck link by the time the current flow finishes
transmission, which is then divided by the link bandwidth to
predict the completion time of the current flow. For example,
to predict the completion time of a flow f when placed onto
a path p, we compute for each link l on p the total traffic
volume Vl from f and coexisting flows that will cross l
upon the completion of f , and then the maximum of Vl/Bl

(Bl is the bandwidth of l) over all the links l ∈ p gives the
predicted completion time of f . This approach applies to any
work-conserving scheduling policy (i.e., a link is never idle
when there is pending traffic on that link), while different
policies differ in the computation of Vl.

1) FCT Under FCFS Scheduling: Under FCFS scheduling,
flows are served in the order they arrive, and FCT of the new
flow can be predicted as:

FCT FCFS(f0, l) =
1
Bl

(sf0 +
∑
f∈Fl

sf ), (3)

and ΔFCT FCFS(f, l) ≡ 0 for all f ∈ Fl since the new
flow does not affect the completion of existing flows. Hence,
the two objectives in (1) and (2) coincide in this case, both
equal to maxl∈pf0

FCT FCFS(f0, l).
2) FCT Under Fair or LAS Scheduling: Under a scheduling

policy that performs fair sharing, all flows will receive equal
service until completion, i.e., by the time flow f0 completes
transmission over link l, each existing flow f ∈ Fl will have
transmitted min(sf , sf0) bytes over l. The FCT of f0 can thus
be predicted as:

FCT FAIR(f0, l) =
1
Bl

⎛
⎝sf0 +

∑
f∈Fl

min(sf , sf0)

⎞
⎠ . (4)

Meanwhile, the fair sharing rule implies that for each flow
f ∈ Fl of size sf < sf0 , scheduling f0 increases its FCT
by imposing an additional traffic load of sf on link l (during
the lifetime of f ); for each flow f ∈ Fl of size sf ≥ sf0 ,
f0 will finish earlier, causing an additional load of sf0 . Thus,
the change in FCT of existing flows is:

ΔFCT FAIR(f, l) =
min(sf , sf0)

Bl
. (5)

Substituting (4) and (5) into (1) gives the overall increase in
the sum FCT.

The alternative objective (2) accepts a more compact form
in this case. Specifically, for given l,

FCT FAIR(f0, l) +
∑
f∈Fl

ΔFCT FAIR(f, l)

=
sf0

Bl
+

2
Bl

∑
f∈Fl

min(sf , sf0) ≈ 2FCT FAIR(f0, l), (6)

where the approximation is accurate when sf0 is small relative
to
∑

f∈Fl
min(sf , sf0).
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Remark: Since LAS scheduling (with preemption) is equiv-
alent to fair sharing, the above result also applies to LAS
scheduling.

3) FCT Under SRPT Scheduling: If the network employs
SRPT scheduling, then only flows of remaining sizes smaller
than or equal to the current flow will be served before the
current flow finishes (assuming FCFS rule is applied to break
ties among flow sizes), and larger flows will be preempted.
Hence, the FCT of the new flow f0 under SRPT can be
predicted as:

FCT SRPT(f0, l) =
1
Bl

⎛
⎝sf0 +

∑
f∈Fl:sf≤sf0

sf

⎞
⎠ . (7)

Meanwhile, each flow of size sf > sf0 will be delayed by
sf0/Bl due to the placement of f0, while flows of size sf ≤
sf0 will not be affected, implying:

ΔFCT SRPT(f, l) =
sf0

Bl
�sf >sf0

, (8)

where �· is the indicator function. Applying (7) and (8) to (1)
gives the first objective. For second objective, we have

FCT SRPT(f0, l) +
∑
f∈Fl

ΔFCT SRPT(f, l)

=
1
Bl

⎛
⎝sf0 +

∑
f∈Fl

min(sf , sf0)

⎞
⎠=FCT FAIR(f0, l). (9)

4) Invariance Condition: This shows that the optimal place-
ment does not need to be aware of the underlying scheduling
policy, although the predicted FCT varies for different network
scheduling policies. This shows that the optimal placement
does not need to be aware of the underlying scheduling
policy, although the predicted FCT varies for different net-
work scheduling policies. For example, we have shown that
under Fair/LAS scheduling, the alternative objective (2) is
approximately twice of the fair-sharing FCT (see (6)). Since
constant-factor scaling does not affect the task placement
decision, these results imply that we can use the same
objective function to place flows no matter whether the
network performs Fair, or LAS scheduling. Similarly, under
SRPT scheduling, the alternative objective (2) reduces to the
fair-sharing FCT of the newly arrived flow (see (9)). This
is based on the assumption that the flow placement is not
impacted by the future arrivals.

Proposition 4.1: If the network performs Fair, LAS,
or SRPT flow scheduling and each flow is small relative to
the total load on each link, then the optimal placement that
minimizes (2) is always the one that minimizes bottleneck
fair-sharing FCT of the newly arrived flow as predicted (4).

Remark: Surprisingly, we have shown that when the network
schedules flows by LAS or SRPT, we should place flows to
minimize their predicted FCTs under Fair scheduling in order
to optimize the objective (2).

B. CCT Prediction for Coflow Scheduling

We now revise the above formulas for the case that the
network schedules traffic at the level of coflow. We study
the following policies applied to coflow scheduling, including

FCFS [20], Fair, LAS [16], and an extension of SRPT called
permutation scheduling [17]. For a coflow c, let sc denote its
total size (in number of bytes), and sc,l denote the sum size
of the individual flows in c that traverse link l. We show that
the idea of computing FCT can be generalized to predict the
performance of coflows.

We make the following assumptions: (i) all flows of a
coflow have the same priority, and (ii) all flows of a coflow
complete simultaneously. The first assumption is based on a
principle adopted by state-of-art coflow schedulers [17], [20]
that flows within a coflow should progress together; the second
assumption is based on a state-of-art coflow rate adaptation
mechanism [17], which slows down all but the slowest flows
in a coflow to match the completion time of the slowest flow
so as to conserve bandwidth without increasing the CCT.
In particular, assumption (ii) allows us to apply the same
objective functions (1, 2) in placing coflows, with f (f0)
replaced by c (c0), FCT replaced by CCT, and pf replaced
by pc (denoting the set of links traversed by any flow of a
coflow c). The computation of CCT(c, l) and ΔCCT(c, l) is,
however, different from their single-flow counterparts, and will
be detailed below. We redefine Fl to be the set of coflows with
at least one constituent flow traversing link l.

1) CCT Under FCFS Scheduling: Under FCFS scheduling,
each link will serve traffic from existing coflows before serving
the newly arrived coflow, thus

CCT FCFS(c0, l) =
1
Bl

(sc0,l +
∑
c∈Fl

sc,l), (10)

and ΔCCT FCFS(c, l) ≡ 0 for all c ∈ Fl.
2) CCT Under Fair or LAS Scheduling: Under fair sharing

or LAS scheduling, all coflows of size smaller than c0 will
have finished and all coflows of size larger than c0 will
have transmitted sc0 bytes when coflow c0 completes. Under
assumption (ii), flows within a coflow make progress propor-
tionally to their sizes, and thus when a coflow traversing link
l finishes b bytes over all its constituent flows, bsc,l/sc bytes
must be transmitted over link l. Therefore, each coflow c ∈ Fl

introduces a load of min(sc, sc0)sc,l/sc on link l during the
lifetime of coflow c0 and vice versa. The above arguments
imply that

CCT FAIR(c0, l)=
1
Bl

⎛
⎜⎜⎝sc0,l+

∑
c∈Fl

sc≤sc0

sc,l+
∑
c∈Fl

sc>sc0

sc0sc,l

sc

⎞
⎟⎟⎠
(11)

for the newly arrived coflow c0, and

ΔCCT FAIR(c, l) =
sc0,l

Blsc0

min(sc, sc0) (12)

for each existing coflow c ∈ Fl. From the above, we see that

∑
c∈Fl

ΔCCT FAIR(c, l)=
1
Bl

⎛
⎜⎜⎝ ∑

c∈Fl

sc≤sc0

scsc0,l

sc0

+
∑
c∈Fl

sc>sc0

sc0,l

⎞
⎟⎟⎠ ,

(13)
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which is different from (11) unless sc,l/sc = sc0,l/sc0 for all
c ∈ Fl. It means that compared to the single-flow Fair/LAS
scheduling, where minimizing the objective (2) reduces to
minimizing the FCT of the newly arrived flow, we have to
explicitly consider the impact on existing coflows through (13)
(in addition to (11)) under coflow Fair/LAS scheduling.

3) CCT Under Permutation Scheduling: Permutation
scheduling [17] serves the coflows sequentially and includes
many scheduling policies as special cases (e.g., FCFS and all
variations of SRPT). Given a permutation π = (πc)c∈Fl∪{c0}
of all the coflows sharing link l, where πc is the order of
scheduling coflow c, the CCT of the newly arrived coflow c0

equals

CCT π(c0, l) =
1
Bl

∑
πc≤πc0

sc,l, (14)

and the increase in CCT for each existing coflow c ∈ Fl equals

ΔCCT π(c, l) =
sc0,l

Bl
�πc>πc0

, (15)

which can be used to evaluate the first objective (1).
For the second objective (2), we have

CCT π(c0, l) +
∑
c∈Fl

ΔCCT π(c, l)

=
1
Bl

⎛
⎝ ∑

πc≤πc0

sc,l + sc0,l|{c ∈ Fl : πc > πc0}|
⎞
⎠ . (16)

In particular, for a counterpart of SRPT called smallesT-
Coflow-First (TCF) [17], (16) becomes

CCT TCF(c0, l) +
∑
c∈Fl

ΔCCT TCF(c, l)

=
1
Bl

⎛
⎜⎜⎝sc0,l +

∑
c∈Fl

sc≤sc0

sc,l +
∑
c∈Fl

sc>sc0

sc0,l

⎞
⎟⎟⎠ , (17)

which is similar to the CCT under fair sharing (11) if sc,l/sc =
sc0,l/sc0 for all c ∈ Fl, sc > sc0 .

4) Invariance Condition: The above analysis shows
that in the special case of sc,l/sc = sc0,l/sc0 for
all c ∈ Fl, i.e., all coflows split traffic among
traversed links in the same way, the objective (2)
satisfies CCT FAIR(c0, l) +

∑
c∈Fl

ΔCCT FAIR(c, l) ≈
2CCT FAIR(c0, l) under Fair/LAS scheduling (assuming
sc0,l � ∑

c∈Flsc≤sc0
sc,l +

∑
c∈Flsc>sc0

sc0,l), and

CCT TCF(c0, l) +
∑

c∈Fl
ΔCCT TCF(c, l) = CCT FAIR

(c0, l) under TCF scheduling. By arguments similar to
Proposition 4.1, we have the following statement.

Proposition 4.2: If the network performs Fair, LAS, or TCF
coflow scheduling, each coflow imposes a small load on each
link (relative to its total load), and sc,l/sc are identical among
all coflows c ∈ Fl for each link l, then the optimal placement
that minimizes (2) is always the one that minimizes the
bottleneck fair-sharing CCT of the newly arrived coflow as
predicted by (11).

Remark: We note that compared to the case of flow schedul-
ing (Proposition 4.1), the invariance property for coflow
scheduling only holds in very special cases when all the

Algorithm 1 Task Placement Algorithm
Input: < predFCTNode, nodeState >
Output: < assignNode >

1 /*predFCTNode = predicted task completion time of the
node. nodeState = minSize of flows scheduled on a node
*/

2 Initialize: assignNode = 1, found = 0.;
3 for node := 1 to M do
4 /* identify candidate hosts */;
5 /* if node is empty or the nodeState is larger than task

size*/;
6 if (predFCTNode == null) ‖

(nodeState >= taskSize ) then
7 if compAvail > 0 then
8 NodeSet + = node;
9 found == 1;

10 /* If no host available, choose the hosts one-hop away */;
11 if (found! = 1) then
12 /* Among the hosts, 1-hop away, with available

compute */;
13 NodeSet + = node;

14 /* Select the best host that gives minimum FCT */;
15 for nodes := 1 to NodeSet do
16 if predFCTNode <= minFCT then
17 assignNode = node;

18 return assignNode;

coflows split traffic in the same way. It means that in contrast
to flow placement, there is rarely a uniformly optimal place-
ment for coflows under different coflow scheduling policies,
and it is crucial to customize coflow placement according to
the underlying coflow scheduling policy in the network.

V. NEAT+ DESIGN

NEAT+ targets data-intensive applications such as MapRe-
duce or directed acyclic graph DAG-based systems (such as
Spark, Tez etc.). Such applications run in multiple stages and
NEAT+ aims at placing tasks in each stage with the goal of
minimizing the average completion time of all the active tasks
in the system. For example, a MapReduce job has two stages,
Map (where input data is processed) and Reduce (where results
of Map stage are summarized) and each stage may have a
data shuffle part and a data processing part. Both data shuffle
and data processing contribute to the total completion time of
a job. Similarly, DAG-based applications can be considered
an extension of MapReduce applications, which can have
multiple Map/Reduce phases [29]. Therefore, in this work for
simplicity, we use MapReduce as the base model and then
extend it to DAG for multi-stage jobs.

A. NEAT+ Task Placement

In this section, we discuss how a new task is placed in
NEAT+ framework and it’s applications to MapReduce and
DAG-based applications.
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1) Flow Placement: NEAT+ places a new task in two steps:
First, it identifies a set of candidate hosts for task placement
(see algo 1 lines 4-14) and next, it selects a best host among
these for task execution (see algo 1 lines 15-18).

Identification of preferred hosts: For a given task,
NEAT+ divides nodes into preferred hosts and non-preferred
hosts based on the the size of the current task and the node
state (defined as the smallest remaining flow size on each
node). If the task generates a flow of size s, then a node is a
preferred host if it is idle or all the flows currently scheduled
on this node are no smaller than s. Using preferred hosts
provides various benefits. First, it reduces the communication
overhead among the network daemons and task placement
daemons. For each new task, the task daemon contacts only a
subset of hosts to get predicted task completion times. Thus,
it improves the time taken to search the right candidate such
that the selection time is linear in the number of candidate
hosts. Secondly, using preferred hosts compliments the ben-
efits of different network scheduling policies. For example,
under the Fair or LAS policy, using predcited FCT, it ensures
that long flows are not placed with existing short flows
(although short flows can be placed with existing long flows
under LAS scheduling), thus improving separation between
short and long flows and reducing the switch queuing delays
experienced by the short flows. Similarly, under the SRPT
policy, it makes sure that the new task can start data transfer
immediately. This is achieved by placing a flow on the host
where it gets the highest priority.

The preferred hosts are further compared in the next step.
If there is no preferred host, such that every node has at
least one flow smaller than the flow of the current task, then
NEAT+ distributes the task based on the available compute
resources, and the node with most available compute resources
is considered as the preferred host.

Selection of a best host: Given a set of preferred hosts,
the next step is to select a host that achieves the minimum
task completion time. The completion time of a task depends
on: i) the time required to transfer input data, and ii) the
time required to process the data. The data transfer time is
captured by the predicted FCT/CCT, which is obtained from
the network daemon (see Section 3). The data processing
time depends on the available node resources (e.g., CPU and
memory), which can be obtained from an existing per-node
resource manager (e.g., Hadoop node manager). In the current
design, NEAT+ compares the available node resources of each
preferred host with requirements imposed by the application
(e.g., minimum CPU and memory) to identify candidate hosts,
and then selects the one that gives the minimum data transfer
time (see algo 1 lines 15-18). This way it approximately
minimizes the overall task completion time for data-intensive
applications.

Remark: NEAT+ is an online scheduler that greedily opti-
mizes the performance of each new task. We choose this
design because: (i) it significantly simplifies the computation
per placement, and (ii) it approximates the optimal place-
ment under certain conditions as specified in Proposition 4.1
and 4.2. Note that NEAT+ only places each task once at the
beginning of its lifetime, and does not move any task during
its execution.

2) Coflow Placement: Compared to flow placement, coflow
placement poses additional challenges. Ideally, we want to
jointly place all the flows in a coflow to minimize the
completion time of the slowest flow. However, in the case
of one-to-many or many-to-many coflows, joint placement
of all the flows in a coflow has exponential complexity due
to the exponentially many possible solutions. To solve this
problem, we use a sequential heuristic, where we first place
the largest flow within the coflow using the flow placement
algorithm, and then place the second largest flow using the
same algorithm based on the updated network state, and so on.
This sequential heuristic used for coflow placement should
have quadratic complexity. The reason for placing flows in
descending order of their sizes is that larger flows are more
likely to be the critical flows determining the completion time
of the coflow and hence should be placed on nodes that have
more available resources. We leave evaluation of other coflow
placement algorithms as a future work. Note that many-to-one
coflows do not have the complexity problem and thus can be
placed optimally.

3) Application to MapReduce Scheduling: NEAT+ consid-
ers each MapReduce job as a concatenation of two tasks, one
for the Map stage and one for the Reduce stage. Since there
are generally multiple Map “tasks” in a job,1 this requires
NEAT+ to place two coflows, one many-to-many coflow for
reading input data into Map tasks and one many-to-one coflow
for shuffling intermediate results to Reduce task (or many-
to-many if there are multiple Reduce tasks). In both the cases,
NEAT+ strives to achieve data locality if possible (as a node
with the input data will have zero FCT/CCT), and minimizes
data transfer time otherwise. For example, for placing Map
tasks, it can leverage the data placement policy of the cluster
filesystem (such as HDFS in Apache Yarn). In HDFS, data
is usually placed on multiple locations for fault tolerance and
to provide better data locality. During Map task placement,
NEAT+ can either place task on the nodes that has the
input data available or choose the nodes using it’s placement
heuristic.

4) Application to DAG Scheduling: DAG-style applications
can be modelled as an extension of MapReduce applica-
tions, except that a DAG may have multiple shuffle stages.
NEAT+ considers each stage of a DAG job as a separate task
and places flows (coflows) within a task using the procedure
discussed in sections V-A1 and V-A2. The placement algo-
rithm used by NEAT+ encourages placing tasks of same job
on nodes close to the input data.

B. NEAT+ Optimizations

NEAT+ needs the state of all the active flows in the network
to make optimal task placement decisions, which can incur
significant overhead at both the network daemons and the
task placement daemon. To reduce the overhead, NEAT+
introduces two optimizations: (i) instead of keeping individual
states of all the active flows, each network daemon only
maintains a compressed state with a constant size, (ii) instead
of contacting all the network daemons, the task placement
daemon determines a subset of nodes as candidate hosts based

1Note that NEAT+ defines “task” differently from the MapReduce.
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on local information and only contacts the network daemons
at the candidate hosts.

1) Compressed Flow State: Keeping the original flow state
requires space that grows linearly with the number of active
flows, which limits scalability of the network daemon (with
respect to network load). NEAT+ addresses this issue by
approximating the FCT/CCT prediction using a compressed
flow state. Each network daemon compresses information of
its local flows (coflows) by quantizing the flow sizes into a
fixed number of bins and maintaining summary statistics (e.g.,
total size and number of flows) in each bin. Compared with
the original flow state that keeps track of individual flows, this
compressed state has a size that is determined by the number
of bins, regardless of the number of flows in the network.

We refer to the set of active flows Fl on link l as the flow
state of link l. The flow states of all the links form the overall
flow state F of the network. Note that under FCFS, we can
easily compress Fl by storing only the total load (

∑
c∈Fl

sf

for flow scheduling and
∑

c∈Fl
sc,l for coflow scheduling),

which suffices for FCT/CCT prediction. We thus focus on the
other scheduling policies in the sequel.

For FCT prediction, our idea is to divide flows on each
link into a finite number of bins n = 1, . . . , N , where we
keep the following parameters for each bin: the minimum
and maximum flow size (s(1)

l,n , s
(2)
l,n), the total flow size (in

number of bytes) bl,n, and the number of flows cl,n. In essence,
we compress a set of flow sizes into a histogram of flow sizes
with flexible bin boundaries (s(1)

l,n, s
(2)
l,n). Using the compressed

flow state, we can approximate (4) by:

FCT FAIR(f0, l)≈ 1
Bl

(
sf0 +

p∑
n=1

bl,n+sf0

N∑
n=p+1

cl,n

)
, (18)

where p = ml(sf0) and ml(s) ∈ {1, . . . , N} is the index of
the bin containing flow size s (i.e., s

(1)
l,ml(s)

≤ s < s
(2)
l,ml(s)

).
Other predictions in § IV-A can be approximated similarly,
although we only need to approximate (4) if the invariance
condition in Proposition 4.1 is satisfied. Note that storing bl,n

is optional as it can be approximated by cl,ns for some s ∈
[s(1)

l,n , s
(2)
l,n).

For CCT prediction, the compressed flow state in each bin
has two additional attributes: dl,n, denoting the total load on
link l (i.e., sum of sc,l over coflows in this bin), and el,n,
denoting the total normalized load on link l (i.e., sum of sc,l/sc

over coflows in the bin). Assuming q = ml(sc0), for Fair/LAS
scheduling, we can approximate (11) by

CCT FAIR(c0, l)≈ 1
Bl

(
sc0,l+

q∑
n=1

dl,n+sc0

N∑
n=q+1

el,n

)
,

(19)

and (13) by

∑
c∈Fl

ΔCCT FAIR(c, l)≈ sc0,l

Blsc0

(
q∑

n=1

bl,n+sc0

N∑
n=q+1

cl,n

)
.

(20)

Under TCF scheduling, we can approximate the righthand side
of (17) by

1
Bl

(
sc0,l +

q∑
n=1

dl,n + sc0,l

N∑
n=q+1

cl,n

)
. (21)

Here storing el,n is also optional as it can be approximated
by dl,n/s for some s ∈ [s(1)

l,n , s
(2)
l,n).

Remark: The compressed flow state has a size that is linear
in the number of bins (which is a design parameter), regardless
of the number of flows in the network. The cost of this com-
pression is the loss of accuracy in the FCT/CCT prediction,
caused by uncertainty in the sizes of flows (coflows) that are
in the same bin as the newly arrived flow (coflow). The bin
sizes can be set based on the datacenter traffic distribution. For
example, for heavy tailed traffic [5], one can use exponentially
growing bin sizes to have smaller bin sizes for short flows and
large bin sizes for long flows.

2) Reduced Communication Overhead: NEAT+ uses dis-
tributed components (network daemons) spread across the
network to maintain the flow states (see Figure 2). To mini-
mize the communication overhead between the task placement
daemon and the network daemons, the network daemons do
not always report their updated flow states; instead, the task
placement daemon pings the network daemons to get the
predicted task performance when it needs to place a new task.

In a large cluster, the task placement daemon has to contact
a large number of network daemons to place a task. To further
reduce the overhead, the task placement daemon uses local
information to reduce the number of network daemons it needs
to contact. Specifically, it only contacts a network daemon if
(i) the node it resides on is sufficiently close to the input data
(e.g., in the same rack or a rack one-hop away from the input
data), (ii) if the node state (i.e., the smallest residual size of
flows currently scheduled on this node) is no smaller than the
size of the current task, and (iii) if the node has sufficient
compute resources available. Note that without contacting the
network daemon, the task placement daemon does not know
the current node state. In our design, the task placement
daemon caches the node states previously reported by the
network daemons and uses the cached values as estimates.

VI. EVALUATION

We evaluate NEAT+ using trace-driven simulations based
on ns2 [2] as well as experiments on a small-scale testbed.

A. Simulation Settings

Datacenter Topology: We use a 160 node, 3-tier multi-
rooted topology for our evaluation comprising layers of
ToR (Top-of-Rack) switches, aggregation switches and core
switches, similar to [4], [35], [37]. Each host-ToR link has
a capacity of 1 Gbps whereas all other links are of 10 Gbps.
The end-to-end round-trip propagation delay (in the absence
of queuing) between hosts via the core switch is 300μs.

Traffic Workloads: We consider traffic workloads that are
derived from patterns observed in production datacenters.
We evaluate NEAT+ using the benchmark Hadoop (map-
reduce) [19] and web-search [6] workloads. These work-
loads contain a diverse mix of short and long flows with a
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TABLE I

DEFAULT PARAMETER SETTINGS USED IN SIMULATION

heavy-tailed flow size distribution. In the web-search work-
load, more than 75% of all bytes are from 50% of the flows
with sizes in the range [1,20MB]. The hadoop workload is less
skewed: ∼50% of the flows are less than 100MB in size and
4% flows are larger than 80GB. We always use these settings
unless specified otherwise.

Protocols Compared: We compare NEAT+ with two task
scheduling strategies: load aware placement (loadAware) and
locality aware placement (minDist). We consider several
state-of-art datacenter network scheduling strategies including
DCTCP (that implements Fair) [5], L2DCT (that implements
LAS) [32], and PASE (that implements SRPT) [31] for flow
scheduling and Varys [17] for coflow scheduling. loadAware
places uniformly distributes the network load, defined as the
utilization ratio of its link to ToR, across all the nodes and
links. minDist places each task as close as possible to its
input data, as proposed by earlier schemes [29]. We also test
coflow performance using smallest coflow first (SCF) heuristic.
We implemented DCTCP, L2DCT, PASE, and Varys using the
source code provided by the authors to evaluate their scheme.
The parameters of these protocols are set according to the
recommendations provided by the authors, or reflect the best
settings, which we determined experimentally (see Table I).
For FCT prediction, we use Fair sharing based prediction
model unless stated otherwise and for CCT prediction, we use
the prediction models corresponding to each evaluated coflow
scheduling scheme.

Performance Metrics: We consider the average flow com-
pletion time (AFCT) for the flow-based scheduling and coflow
completion time (CCT) for coflow-based scheduling schemes.
We use gap from optimal as the performance metric. For
example, for FCT based schemes, the gap from optimal is
calculated as (FCT − FCT opt)/FCT opt, where FCT opt is
the optimal FCT defined as the time it takes to complete
the data transfer when that is the only flow (coflow) in the
network. Note that the gap from optimal equals slowdown
(a.k.a. stretch) minus one. The gap from optimal tells us
the margin for performance improvement for different kind
of network scheduling policies. For example, we observe in
our evaluation that the room for improvement is more for
suboptimal scheduling policies, in terms of FCT, (such as
FAIR, LAS) and less for near-optimal network scheduling
policies (such as SRPT).

B. Macrobenchmarks

Flow Placement Performance Under Fair Sharing: Figure 5
shows that NEAT+ outperforms loadAware and minDist by
up to 3.5x for web-search workload and up to 3.8x for
Hadoop workloads when the network employs Fair sharing
scheduling policy. This is because NEAT+ chooses the node

Fig. 5. Flow placement under DCTCP.

Fig. 6. Flow placement under Hadoop workload.

with minimum processing time and minimum data transfer
time to finish flows faster and uses node state NEAT+ to
avoid congestion in the network. Note that many of the existing
policies deployed in the datacenter employ Fair sharing disci-
pline. This shows that even if datacenter does not implement
any optimized network scheduling mechanism, NEAT+ can
improve application performance significantly by being aware
of network state.

Flow Placement Performance Under Different Network
Scheduling Policies: Figure 6 shows NEAT+ performance
for Hadoop workload when the network uses L2DCT (LAS)
and PASE (SRPT) as network scheduling policies. NEAT+
improves the performance by 2.7x compared to loadAware and
by upto 3.2x compared to minDist when used with L2DCT.
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Fig. 7. CoFlow placement for Hadoop workload.

NEAT+ also improves the performance by 33% compared
to loadAware and by upto 22% compared to minDist when
used with PASE. Note that PASE is a near-optimal algorithm
and there is very little performance improvement margin
for NEAT+. Also, observe that minDist and loadAware per-
form differently under different scheduling policies, whereas,
NEAT+ consistently performs better than both for all the
evaluated network scheduling policies. We observe similar
performance trends with websearch workloads.

Flow Placement Performance for High Bandwidth Topol-
ogy: We also evaluate NEAT+ performance with a topology
where each host-ToR link has a capacity of 10 Gbps whereas
all other links are of 40 Gbps. NEAT+ improves the per-
formance by 1.9x compared to loadAware and by upto 2.9x
compared to minDist when used with L2DCT. NEAT+ also
improves the performance by 41% compared to loadAware and
by upto 25% compared to minDist when used with PASE. We
Omit results for brevity and space limitations.

CoFlow Placement Performance Under Different Network
Scheduling Policies: NEAT+ improves the CCT performance
for Hadoop workloads by upto 28% for two coflow scheduling
policies, 1) Varys (Figure 7(a)) and 2) Smallest Coflow First
(SCF) (Figure 7(b)). Coflow placement requires a group of
flows to be placed in a batch. For coflow placement, NEAT+
works as described in Section 5.1, while minDist is modified
as follows - For minDist, our goal is to place flows of
the same coflow within the same rack and close to input
data and we start by placing the largest flow of a coflow
first. NEAT+ performs better under both coflow scheduling
policies, however its gains are limited by the performance of
underlying coflow scheduling policy. For example, minDist
with Varys scheduling performs better than NEAT+ with SCF
scheduling. The reason for this is that Varys, which adjusts
the flow rates based on the smallest bottleneck heuristic,
is a much better heuristic than SCF. However, we observe
that the gap from optimal is substantial (30% to 50%), for
these strategies, for large flow sizes with Varys and nearly

Fig. 8. Fair prediction vs SRPT prediction.

Fig. 9. Benefits of using preferred hosts placement.

for all flow sizes with SCF. The reason for this gap is that
the optimal completion time is not always achievable, even
under the optimal scheduling, as our definition of optimal
ignores resource competition from other flows/coflows. Also,
many of these protocols implement certain approximations,
instead of the actual optimal scheduling algorithm, to be more
deployment friendly.

C. Microbenchmarks

In this section, we discuss various aspects of NEAT+
design, with the help of several micro-benchmarks. We ana-
lyze NEAT+ dynamics using Hadoop workload under
SRPT (PASE) network scheduling policy, unless stated other-
wise. Our evaluation shows that NEAT+ optimizations (such
as prediction assuming FAIR policy only, preferred hosts)
improve the application performance and it can predict task
completion times quite accurately.

Benefits of Using Fair Predictor: Figure 8 shows the
NEAT+ performance when task completion time is predicted
using the Fair-sharing model (Eq. 4) or the SRPT-sharing
model (Eq. 7) when the underlying network scheduling mech-
anism is SRPT. Both predictors achieve similar performance,
therefore, even though the network performs SRPT flow
scheduling, NEAT+ can perform FCT prediction by assum-
ing the fair-sharing principle. This validates our proposition,
in § IV-A4, which states that for flow based network schedul-
ing mechanisms, task placement using minimum predicted task
completion time, assuming FAIR predictor, can provide better
performance for any flow based network scheduling policy.

Benefits of Using Preferred Hosts Aware Placement:
Figure 9 shows the benefits of using preferred hosts for
making task placement decisions. To evaluate the impact on
performance, we compare NEAT+ performance to minFCT.
minFCT strategy makes task placement decision based on the
predicted task completion times alone and ignores the node
states i.e., it places each task on to a node with the smallest
predicted FCT and does not consider the priority of the tasks
already scheduled on that node and the available compute
resources on that node. Figure 9 shows that minFCT placement
degrades application performance by up to 51%, and performs
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Fig. 10. Completion time prediction error.

even worse than minDist placement. NEAT+ on the other
hand achieves better performance by being aware of node
states. Intuitively, minFCT hurts performance in two ways:
i) it groups short flows together, thus increasing fair sharing
among short flows. ii) for long flows it selects nodes with
many short flows, thus long flows experience more preemption
by the currently scheduled and newly arriving short flows.
We note that the comparison between minFCT and minDist
is workload-dependent, e.g., for the workloads, where short
and long flows have proportional number of bytes, minFCT
performs similar to or better than minDist placement.

Flow Completion Time Prediction Accuracy: NEAT+ can
predict flow completion times with reasonable accuracy as
shown in Figure 10. NEAT+ performance depends on accu-
rately predicting completion times. It is important to keep
the prediction error small because NEAT+ only considers
currently active tasks while predicting FCTs and future task
arrivals may make current placement decisions suboptimal.
Figure 10 reports the prediction accuracy, which is calculated
as (FCT flow−FCT pred)/FCT pred, where FCT flow is the
actual FCT and FCT pred is the FCT predicted by NEAT+.
Figure 10 shows the prediction accuracy for short flows
(Figure 10(a)), and long flows (Figure 10(b)) and we observe
that the prediction error increases with the flow size. This is
because, with the increase in flow size, the flow spends more
time in the network and is affected more by the tasks arriving
later in time. In many practical datacenter applications, most
tasks generate short flows, for which NEAT+ can predict the
FCT within 5% error. This shows that NEAT+ is not very
sensitive to mis-prediction in task completion time estimate
and it is able to achieve good performance even in the presence
of small inaccuracies in task completion time estimates.

NEAT+ Overheads: NEAT+ introduces minimal commu-
nication overhead because of the preferred host aware task
placement mechanism. NEAT+ adds only < 1% commu-
nication overhead, which is 56% and 31%, for websearch
and hadoop workloads respectively, compared to the scenario
where the task placement daemon contacts all the 1-hop
away network daemons. Furthermore, NEAT+ makes task
palcement decisions in an online fashion, without incurring
any delays, due to two reasons. 1) The global task placement
daemon uses the local cached information, obtained from the
network deamons, to make placement decisions, hence no wait
time to get network state. 2) It maintains a compressed network
state information, which reduces the run-time complextiy of
the placement decision from number of flows in the network
(O(n)) to number of flow size bins (O(k)), where k � n. Note
that, in a large datacenter n can be in order of millions and
k is only in the order of ten(s). With websearch workload,

Fig. 11. Testbed: loadAware vs NEAT+.

It speeds up the decision making process by 17%, with only
0.1% loss in performance.

D. Testbed Evaluation

Implementation: NEAT+ follows a master/slave architec-
ture similar to Hadoop-Yarn [1], and we implement NEAT+
in Scala using support from Akka for messaging between task
placement daemon (TD) and network daemons (ND). We cur-
rently implement NEAT+ as an application layer program by
extending Varys implementation [17] and leave the integration
with Hadoop-Yarn as a future work. Similar to Yarn, the TD
acts as the resource manager (RM) and makes task placement
decisions, and NDs act as node managers, which maintain
flow state of the active jobs and share the network state upon
receiving requests from the task placement daemon. The TD
accepts a user job similar to RM and invokes network daemon
APIs at the nodes (endhosts). Cluster framework (e.g., Spark
or Hadoop) drivers can submit a job using the register()
API to interact with NEAT+. Upon receiving a request from
the TD, NDs update their local states and reply with predicted
task performance and node state. The TD then runs our
placement algorithm to schedule flows on selected nodes.
To support multiple network scheduling policies, we reuse
Varys’ put() and get() method to send and receive data
between different nodes. Cluster frameworks can use NEAT+
InputStream and OutputStream to leverage various
network scheduling policies. The desired network scheduling
policy can be specified during network configuration phase.

Evaluation Results: We evaluate NEAT+ using a 10-node
single-rack cluster consisting of DELL servers (with 1G NICs)
and PICA-8 Gigabit switch with ECN support enabled. We
consider scenario with all-to-all traffic based on Hadoop work-
load [19] and generate traffic such that the average network
load is 50%. We first generate the traffic using ns2 and
replay the same traffic in the testbed. The hadoop workload
generates many long flows as ∼50% of the flows are less
than 100MB in size and 4% flows are larger than 80GB.
We compare NEAT+ to loadAware task placement under Fair
(implemented by DCTCP) and LAS (implemented by L2DCT)
network scheduling policies. Because of the small scale of the
testbed, we do not compare with minDist (since all node pairs
have the same distance), and only evaluate using flow-based
network scheduling policies.

Our evaluation shows that, compared to loadAware, NEAT+
can improve application performance by upto 30% under Fair
scheduling and upto 27% under LAS scheduling policy, see
Figure 11. The gain in testbed scenario is much less than the
large scale simulations, and the reason for small gain is the
small scale of the testbed. In our evaluation, we observe that a
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lot of long flows are generated that run simultaneously in the
network and share links with short flows. Both the placement
algorithms spread large flows across all the nodes in the
network, over the time, and therefore increase the completion
time of short flows because they share the network links and
switch buffers, most of which are occupied by long flows.
This effect is not observed in large scale networks where a
flow can mostly have many available nodes to chose from.
Although, the size of the testbed limits the amount of improve-
ment, NEAT+ is able to improve the performance under both
the network scheduling policies by making better placement
decisions. We also compare testbed results to ns2 simulations
and observe similar performance gains.

VII. DISCUSSION

Input Data Placement

NEAT+ can leverage the knowledge of input data locations
to improve scalability and make more accurate placement
decisions. However, input data may not be optimally placed,
which limits NEAT+ performance. In such cases, NEAT+ can
be combined with strategies like corral [29] to make input
data and task placement decisions based on the task execution
history.

Flow Size Information

NEAT+ requires flow size information to predict task
performance, however, flow size may not always be available.
For example, the motivation behind using LAS-based network
scheduling is to address this challenge [32]. In such scenarios,
NEAT+ can use approximate flow sizes based on the task
execution history for performance prediction, as we have
shown that NEAT+ minimizes task completion time even with
some inaccuracy in predicted task completion times (§VI-C).

Generalization of Network Topologies

Currently, NEAT+ assumes a single-switch topology and
predicts task performance based on the edge links only,
however, any link in the network can be bottleneck in other
topologies. To make better placement decisions, one can use a
distributed state maintenance mechanism similar to PASE [31]
where a dedicated arbitrator maintains flow state for each link
in the network. NEAT+ can choose the destination that gives
the minimum completion time along the path from source
to destination. Nevertheless, our evaluation shows that the
single-switch abstraction already provides substantial perfor-
mance improvement over existing solutions (section 6).

NEAT+ Scalability

NEAT+ introduces several optimizations to make system
more scalable. For example, to mitigate the communication
overhead among daemons, it uses node states while contacting
nodes for performance prediction estimate. This reduces the
amount of overhead messages sent over the network for
communication among network and task placement daemons.
Also, to reduce the overhead of task state maintenance by the
network daemons, NEAT+ uses compressed flow state while
predicting the task performance. As shown in § VI-C, these

optimizations help improve NEAT+ performance, however,
we leave large scale scalability analysis of these optimizations
as a future work.

VIII. CONCLUSION

This work proposes a task placement framework that takes
into account the network scheduling policy and shows that
significant performance gains can be obtained over task sched-
ulers oblivious to network scheduling. NEAT+ task scheduler
makes task placement decisions by using a pluggable task
performance predictor that predicts the data transfer time of
a given task under given network conditions and network
scheduling policy. Despite several simplifying assumptions,
NEAT+ achieves promising performance improvement under
several commonly used network scheduling policies. Its plug-
gable architecture allows easy incorporation of sophisticated
resource and application models.
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