
Attack Resilience of Cache Replacement Policies
Tian Xie, Ting He, Patrick McDaniel, and Namitha Nambiar

Pennsylvania State University, University Park, PA, USA. Email: {tbx5027,tzh58,pdm12,nmn5265}@psu.edu

Abstract—Caches are pervasively used in computer networks
to speed up access by reusing previous communications, where
various replacement policies are used to manage the cached
contents. The replacement policy of a cache plays a key role
in its performance, and is thus extensively engineered to achieve
a high hit ratio in benign environments. However, some studies
showed that a policy with a higher hit ratio in benign envi-
ronments may be more vulnerable to denial of service (DoS)
attacks that intentionally send requests for unpopular contents.
To understand the cache performance under such attacks, we
analyze a suite of representative replacement policies under the
framework of TTL approximation in how well they preserve
the hit ratios for legitimate users, while incorporating the delay
for the cache to obtain a missing content. We further develop
a scheme to adapt the cache replacement policy based on the
perceived level of attack. Our analysis and validation on real
traces show that although no single policy is resilient to all the
attack strategies, suitably adapting the replacement policy can
notably improve the attack resilience of the cache.

Index Terms—cache replacement policy, access delay, DoS
attack, attack resilience, TTL approximation.

I. INTRODUCTION

As one of the most widely-applied techniques in computer
systems, caching can significantly boost system performance
by storing and reusing previous computation or communi-
cation results. In the networking context, caches can serve
requests close to the users, and thus reduce content access
latency, network traffic load, and server workloads. Because
of these benefits, they have been widely deployed in a variety
of systems, e.g., World Wide Web (WWW) [1], [2], [3],
Content Delivery Networks (CDNs) [4], Information Centric
Networking (ICN) [5], and Domain Name System (DNS) [6].
In the emerging paradigm of Software Defined Networking
(SDN), caches called flow tables are used to store controller
instructions to alleviate the data-control plane bottleneck.

An attractive property of caches is that they are plug-and-
play components that automatically adapt their contents to
the current needs. At the core of this adaptation is a suite
of replacement policies that decide which contents to evict to
make room for new contents. There is a long series of works
on developing and analyzing cache replacement policies, from
simple First In First Out (FIFO) or Least Recently Used
(LRU) to sophisticated policies involving virtual caches and

This work was supported by the National Science Foundation under award CNS-
1946022. This research was also partly sponsored by the U.S. Army Combat Capabil-
ities Development Command Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

multiple stages [7], [8]. However, most existing works only
considered the performance in benign environments, where all
the requests are from legitimate users.

Meanwhile, empirical studies in [9], [10] revealed that
a policy with superior performance in benign environments
can perform poorly under DoS attacks that flood the cache
with requests for unpopular contents. For example, the Least
Frequently Used (LFU) policy that is known to be optimal
in the benign environment under the Independent Reference
Model (IRM) [8] performs worse than LRU under attacks [9],
[10], which is in turn worse than FIFO [10].

Motivated by these observations, we perform a comprehen-
sive study of the attack resilience of cache replacement policies
using the tool of Time-to-Live (TTL) approximations. These
approximations not only allow us to explain how DoS attacks
affect the hit ratios of the contents of interest, but also shed
light on the optimal attack strategy and the defenses.

A. Related Work

Cache Replacement Policies: At a high level, cache
replacement policies can be classified into capacity-driven
policies, where a cached content is only evicted to make room
for new content, and TTL-based policies, where a cached
content is evicted after its TTL expires [11]. Traditionally,
most policies are capacity-driven as they fully utilize the
cache space, which can be further classified into recency-based
policies (e.g., FIFO, LRU), frequency-based policies (e.g.,
LFU), randomized policies, and policies based on application-
specific attributes (e.g., sizes, functions) [1], [2]. However,
when maintaining consistency with the origin server is im-
portant, e.g., in DNS and WWW, TTL-based policies are
popular [11]. In cases such as SDN, a combination of both
types of policies is used [12]. The common objective of these
policies is to maximize the cache hit ratio.

The performance of a single cache has been extensively
studied. As exact analysis is difficult [7], various approxima-
tions have been developed, most notably the TTL approx-
imation that models capacity-driven policies by TTL-based
policies [13]. This idea has been used to predict the hit ratio
for a number of capacity-driven policies, including FIFO,
Random, LRU, and their variations [14], [8], [7]. The request
processes under which these approximations apply have also
been generalized from Poisson processes (i.e., IRM) [13] to
renewal processes [8], Markov processes [7], and general
stationary processes [15]. Besides known to be numerically
accurate, TTL approximations are also shown to be asymptot-
ically exact for large caches [16], [7], [15].

Application of cache replacement policies have also been
studied in various systems, e.g., WWW [1], [2], [3], CDN [4],
ICN [5], and DNS [6]. Many of these systems employ a
network of interconnected caches, for which analytical results
have been obtained under TTL approximations [6], [11], [17].

Most works on cache performance analysis assumed
that a content is immediately available at the cache after
a miss, which causes modeling error when the cache has
non-negligible content access delays. This problem was first
realized in [18], where new TTL approximations incorporating
such delays were derived for FIFO, Random, and LRU. We
will extend such analysis to a larger set of policies.

Attacks and Defenses: Caches have been the common
targets of malicious attacks. In the networking context, caches
can be used to extract private information [19], [20], [10],
but the focus has been on degrading the cache performance
by overwhelming its capacity [19], [21], [22], [23], [24] or
occupying it with unpopular contents [19], [9], [25], [10], both
effectively denying service to legitimate requests.

As for defenses, existing works mostly focused on us-
ing system-specific countermeasures to prevent/mitigate at-
tacks (e.g., [26] for DNS, [27], [28] for ICN, [20], [21],
[22], [23], [24] for SDN) or detecting attacks [29], [30], [9].
In contrast, we aim at understanding the attack resilience
of the cache itself. Although attack resilience of caches has
been briefly discussed in [31], [25], [31] only considered
one attack strategy (similar to mice-flow attack considered
in Section IV-A), and [25] only considered one replacement
policy (FIFO), leaving open important questions such as: (i)
How do popular replacement policies compare in terms of
attack resilience? (ii) How does this comparison depend on the
attack strategy? (iii) Is there a policy that is resilient to all the
attack strategies? We will develop a tool (TTL approximation)
to answer these questions analytically and provide explicit
answers for representative policies and attack strategies.

B. Summary of Contributions

Our contributions are four-fold:
1) We extend the TTL approximation to incorporate the

delays for the cache to obtain missing contents for a suite of
state-of-the-art policies known to have superior performance
in benign environments [8], which is of independent interest.

2) We use the obtained formulas to analyze the optimal
attack strategy under a fixed total attack rate and its impact
on the cache performance for legitimate requests.

3) Observing that the best policy in different attack scenarios
can be different, we propose a scheme to adapt the replacement
policy based on coarse parameters of the attack.

4) We perform a case study in SDN (flow table as cache)
based on real traces. Besides confirming the accuracy of our
analysis and the efficacy of the proposed policy adaptation
scheme, our results also reveal relatively good resilience of
two-staged policies, especially the one with FIFO eviction rule.

Roadmap. We will formulate our problem in Section II,
present our TTL approximations in Section III, analyze the op-
timal attack strategy and its impact in Section IV, present our

policy selection scheme in Section V, present our experimental
results in Section VI, and conclude the paper in Section VII.

II. PROBLEM FORMULATION

A. Request Arrival Model

Let F denote the set of all possible contents requested from
the cache. Among these, a subset Fl contains the contents of
interest to legitimate users, and its complement Fa contains
the contents requested by the adversary during a DoS attack.
We assume that Fl ∩ Fa = ∅ as an intelligent adversary
will never request anything of interest to legitimate users. We
will use the Independent Reference Model (IRM) to obtain
closed-form results, and discuss the generalization to arbitrary
renewal processes when applicable.

Under IRM, the requests for each content f ∈ F arrive
according to an independent Poisson process with rate λf .
Under the renewal model, the requests for each f ∈ F arrive
according to an independent renewal process with inter-arrival
distribution Gf (y), i.e., the i-th inter-arrival time Yi satisfies
Pr{Yi ≤ y} = Gf (y) for all y ≥ 0. Let G̃f (y|t) denote the
distribution function of the excess life at time t, i.e., if Zt is the
time from t to the next arrival, then Pr{Zt ≤ y} = G̃f (y|t)
for all y ≥ 0. Let mf (t) denote the renewal function, defined
as the expected number of arrivals in (0, t]. In the sequel, we
will simply use “flow” to refer to a sequence of requests for
the same content. Accordingly, we also refer to F as the set
of all the incoming flows to the cache, Fl as the subset of
legitimate flows, and Fa as the subset of attack flows.

B. Cache Model

Suppose that the cache under consideration has size C,
measured in the number of distinct contents it can store.
We adopt the common assumption that all contents are of
equal size, as variable-sized contents can be split into equal-
sized chunks for caching. When the cache is full, the cached
contents are dynamically updated by its replacement policy.
We consider a set of such policies as follows:
• FIFO: The First In First Out (FIFO) policy makes room

for a new content by evicting the oldest cached content.
• Random: This policy evicts a randomly selected cached

content to make room for a new content.
• LRU: The Least Recently Used (LRU) policy makes

room for a new content by evicting the cached content
that has not been requested for the longest time.

• q-LRU: This is a variation of LRU that only inserts a
newly requested content into the cache with probability q.

• LRU-2: This is a two-staged policy that maintains a vir-
tual cache (cache 1) storing content IDs and a real cache
(cache 2) storing the actual contents, both employing
the eviction rule of LRU. Each requested content ID not
already in the virtual cache will be inserted into the virtual
cache, but a requested content not already in the real
cache will be inserted into the real cache if and only if its
ID is already in the virtual cache. This policy can be ex-
tended to k > 1 caches, known as LRU-k, where caches
1, . . . , k−1 are virtual caches and cache k is a real cache.

2

• FIFO-2: This is a two-staged policy similar to LRU-2,
except that the eviction rule at each cache is FIFO.

• Random-2: This is another two-staged policy, except
that the eviction rule at each cache is Random.

These policies can all be considered traffic-oblivious ap-
proximations to the Least Frequently Used (LFU) policy that
statically stores the most popular contents, as LFU requires
prior knowledge of content popularity. In a benign environ-
ment, LFU is known to have superior performance (optimal
under IRM) [8], and some of the above policies can approxi-
mate LFU without requiring prior knowledge. Specifically, q-
LRU tends to LFU as q → 0, and LRU-k tends to LFU as k →
∞, with much of the performance gain achieved at k = 2 [8].

While traditional cache performance analysis assumes that a
content is immediately available at the cache after a miss1, we
consider a scenario more practical for network caches, where
before inserting a missing content, the cache must first obtain
the content from its origin server, which incurs a (possibly
random) delay D referred to as the access delay. During the
access delay, new requests of this content will incur misses
but not generate further requests to the origin server. Let D̄
denote the mean access delay.

C. Objective

Our primary objective is to quantify the attack resilience
of existing replacement policies in terms of how well they
can preserve the hit ratios for legitimate users under DoS
attacks, and develop new policies with better attack resilience.
Our secondary objective is to improve the accuracy of TTL
approximations by incorporating access delays.

III. TTL APPROXIMATION WITH ACCESS DELAY

Traditional TTL approximation formulas [8] are based on
the assumption that the requested content is immediately
available to the cache after a miss, which is too simplistic
for network caches due to the access delay. It has been
shown [18] that the existence of access delay causes notable
deviation between the traditional TTL approximation and the
actual hit ratio, where new TTL approximation formulas were
developed to incorporate the impact of access delay for simple
replacement policies including FIFO, Random, and LRU.
Below, we will extend this study to a list of more sophisticated
state-of-the-art replacement policies, by providing closed-form
formulas under IRM (i.e., Poisson request arrivals) and gen-
eralizations under arbitrary renewal arrivals.

A. Review of Existing Results

In the presence of access delays, the following TTL approx-
imations have been developed by [18]:
• FIFO: A FIFO cache can be modeled as a TTL cache with

constant non-reset timers of timeout T [32]. Under Poisson
arrivals, the hit ratio for content f is

hFIFO
f =

λfT

1 + λf (D̄ + T)
. (1)

1Equivalently, each missing content will be available at the cache before
the next request arrives.

D T

outgoing request

incoming request having miss

incoming request having hit

...

stage 1 stage 2 stage 3

Γ𝑓(𝐷) Γ𝑓(𝑇𝑒)

Fig. 1. Renewal period under q-LRU.

Under renewal arrivals, this hit ratio is

hFIFO
f =

E[mf (D + T)]− E[mf (D)]

1 + E[mf (D + T)]
, (2)

where the expectation is over the access delay D.
• Random: A Radom cache can be modeled as a TTL

cache with exponentially distributed non-reset timers with
mean timeout T̄ [32]. Under Poisson arrivals, the hit ratio
for content f is

hRandom
f =

λf T̄

1 + λf (D̄ + T̄)
, (3)

which is identical to (1) except that T is replaced by T̄ . Under
renewal arrivals, this hit ratio is the same as (2), except that
the expectation is over both D and T (which is exponentially
distributed with mean T̄).
• LRU: An LRU cache can be modeled as a TTL cache

with constant reset timers of timeout T [32]. Under Poisson
arrivals, the hit ratio for content f is

hLRU
f =

eλfT − 1

λf D̄ + eλfT
. (4)

Under renewal arrivals, this hit ratio is

hLRU
f =

E[G̃f (T |D)]

(1−Gf (T))(1 + E[mf (D)]) + E[G̃f (T |D)]
, (5)

where the expectation is over D.
Here, the parameter T (or T̄), known as the characteristic

time, can be computed from the characteristic equation:∑
f∈F

of = C, (6)

where of is the cache occupancy probability of content f as
a function of the characteristic time. Under Poisson arrivals,
of = hf due to the PASTA property of Poisson processes.

B. TTL Approximation for q-LRU

The basic observation is that under renewal arrivals, the re-
sponses of the cache form renewal periods that are statistically
identical to each other, and thus it suffices to analyze the hit
ratio within a single renewal period. Below we will focus on
a single content f as the analysis is identical for all contents.

As illustrated in Fig. 1, each renewal period starts when the
cache forwards a request to the origin server and ends right
before the next request that is forwarded to the origin server.
Each period contains three stages: (i) stage 1 is the time D
when the cache is waiting for the requested content from the
origin server, during which all incoming requests will incur

3

misses, (ii) stage 2 is from the arrival of the content to (right
before) the next miss, during which all incoming requests will
incur hits, and (iii) stage 3 is from this miss to (right before)
the next request from the cache to the origin server, during
which all incoming requests will again incur misses. In the
sequel, let Xi (i = 1, 2, 3) denote the number of incoming
requests in stage i. The hit ratio for f is thus

hf =
E[X2]

E[X1] + E[X2] + E[X3]
. (7)

1) Poisson Arrivals: For stage 1, it is easy to see that
E[X1] = 1+λf D̄, where the ‘1’ accounts for the arrival at the
beginning of the period. For stage 2, since q-LRU behaves the
same as LRU under hits and an LRU cache behaves like a TTL
cache with reset timers and a constant timeout T [32], each
new request generates a hit if and only if it arrives no later than
T after the previous request, which occurs with probability
1− e−λfT . Thus,

Pr{X2 = n} = (1− e−λfT)ne−λfT , n = 0, 1, . . . , (8)

and E[X2] = eλfT − 1. For stage 3, we know that by
its definition, a q-LRU cache will only request the missing
content from the origin server (to insert it into the cache) with
probability q upon a miss, and thus the number of consecutive
misses before the cache requests the content from the origin
server is distributed as

Pr{X3 = m} = (1− q)mq, m = 0, 1, . . . , (9)

and E[X3] = (1− q)/q. Plugging these results into (7) yields

hq-LRU

f =
eλfT − 1

λf D̄ + eλfT + 1−q
q

, (10)

which reduces to (4) as q → 1 as expected. The parameter T
in (10) can be solved from

∑
f∈F h

q-LRU

f = C.
2) Renewal Arrivals: Without loss of generality, assume

that t = 0 at the beginning of the renewal period under
consideration. For stage 1, it is easy to see that E[X1] =
1 + E[mf (D)], where the expectation is over D. For stage 2,
each new request generates a hit if and only if it arrives no later
than T after the timer resets, and the time between an arrival
and the most recent timer reset is the excess life at D for the
first arrival in stage 2 and an inter-arrival time thereafter. Thus,

Pr{X2=n|D}=
{

1− G̃f (T |D) if n = 0,

G̃f (T |D)Gf (T)n−1(1−Gf (T)) o.w.,
(11)

and hence E[X2] = E[G̃f (T |D)]/(1 − Gf (T)), where the
expectation is over D. For stage 3, we still have E[X3] =
(1 − q)/q, as the number of consecutive misses before a q-
LRU cache requests the content from the origin server (i.e.,
X3) does not depend on the arrival process. Plugging these
results into (7) yields

hq-LRU

f =

E[G̃f (T |D)]
1−Gf (T)

1 + E[mf (D)] +
E[G̃f (T |D)]
1−Gf (T) + 1−q

q

, (12)

where parameter T can be solved from (6).

D T2

outgoing request

incoming request having miss

incoming request having hit

...

stage 1 stage 2 stage 3
cache 2:

cache 1:

T1
......

Fig. 2. Renewal period under LRU-2.

C. TTL Approximation for LRU-2

For a multi-staged policy such as LRU-k, the cache at each
stage has its own renewal periods that are approximately inde-
pendent across stages due to the vastly different characteristic
times at different stages [8]. We thus need to analyze the
renewal period at each stage. Below, we give detailed analysis
for k = 2, but our approach extends to the general case.

As illustrated in Fig. 2, each renewal period of cache 2 (the
real cache) is the time between consecutive requests to the
origin server, and consists of three stages defined as in Sec-
tion III-B. The difference is that an incoming request triggers
an outgoing request to the origin server if and only if it results
in a miss in cache 2 and a hit in cache 1 (the virtual cache).

1) Poisson Arrivals: The analysis for stages 1 and 2 re-
mains the same as in Section III-B1, as the real cache behaves
the same in these stages. That is, E[X1] = 1 + λf D̄ and
E[X2] = eλfT2 − 1, where T2 is the characteristic time of
cache 2. For stage 3, we see by the definition of LRU-2 that
X3 is the number of consecutive misses in cache 1 before the
next hit, which will trigger an outgoing request to the origin
server and the starting of a new period. Since cache 1 is an
LRU cache without access delay (as it only stores content
IDs), we know from [32] that it behaves like a TTL cache
with constant reset timers T1, which denotes its characteristic
time. Moreover, as long as T2 ≥ T1 (which holds when the
two caches have the same size [8]), the first request in stage 3
must result in a miss in cache 1 because it arrives later than T2

after the previous request (which is why stage 3 has started)
and T2 ≥ T1. Thus,

Pr{X3 − 1 = m} = e−mλfT1(1− e−λfT1), m ≥ 0, (13)

and hence E[X3] = 1/(1 − e−λfT1). Plugging these results
into (7) yields

hLRU-2
f =

eλfT2 − 1

λf D̄ + eλfT2 + 1

1−e−λfT1
. (14)

Here, T1 is the solution to the characteristic equation of
cache 1:

∑
f∈F h

LRU
f = C1 (C1: size of cache 1), where there

is no access delay, and T2 is the solution to the characteristic
equation of cache 2:

∑
f∈F h

LRU-2
f = C.

2) Renewal Arrivals: By similar arguments, we see from
Section III-B2 that E[X1] = 1 + E[mf (D)] for stage 1, and
E[X2] = E[G̃f (T2|D)]/(1−Gf (T2)) for stage 2, where both
expectations are over D. For stage 3, the above analysis shows
that X3 − 1 is the number of consecutive inter-arrival times

4

D T2

outgoing request

incoming request having miss

incoming request having hit

...

stage 1 stage 2 stage 3
cache 2:

cache 1:

T1
......

Fig. 3. Renewal period under FIFO-2.

in this stage that are greater than T1, the timeout value of the
TTL approximation of cache 1. Thus,

Pr{X3 − 1 = m} = (1−Gf (T1))mGf (T1), m ≥ 0, (15)

and hence E[X3] = 1/Gf (T1). Plugging these results into (7)
yields

hLRU-2
f =

E[G̃f (T2|D)]
1−Gf (T2)

1 + E[mf (D)] +
E[G̃f (T2|D)]
1−Gf (T2) + 1

Gf (T1)

, (16)

where T1 and T2 can be computed from (6).

D. TTL Approximation for FIFO-2

Our analysis in Section III-C extends naturally to other
multi-staged policies employing different eviction rules.
Specifically, FIFO-2, as illustrated in Fig. 3, has renewal
periods and three stages per renewal period that are defined in
the same way as in Section III-C. The difference is that each
cache follows the FIFO eviction rule.

1) Poisson Arrivals: For stage 1, we again have E[X1] =
1 +λf D̄. For stage 2, as cache 2 behaves the same as a FIFO
cache upon hits, which in turns behaves like a TTL cache
with constant non-reset timers [32], this stage has a fixed
duration T2 (the characteristic time of cache 2), during which
the expected number of incoming requests is E[X2] = λfT2.
For stage 3, again by the definition of two-staged policies,
the number of requests X3 in this stage is the number of
consecutive misses in cache 1. Here, cache 1 is a FIFO
cache without access delay, which behaves like a TTL cache
with constant non-reset timers T1 (the characteristic time of
cache 1) [32]. Different from LRU-2, the first request in stage 3
may result in a hit in cache 1 (which triggers a request to the
origin server and starts a new period), as there is no guaranteed
gap between the last arrival in stage 2 and the first arrival
in stage 3. Under the assumption that the two caches are
independent (because T2 is usually much larger than T1) [8],
this occurs with a probability equal to the hit ratio of cache 1,
which is λfT1/(1 + λfT1) by (1). Conditioned on the first
request in stage 3 incurring a miss in cache 1, each subsequent
request incurs a miss in cache 1 if and only if the time between
it and the previous request is greater than T1, which occurs
with probability e−λfT1 . Thus,

Pr{X3 = m}=

{ λfT1

1+λfT1
if m = 0,

e−(m−1)λfT1 (1−e−λfT1)
1+λfT1

if m > 0,
(17)

and hence E[X3] = 1/[(1 + λfT1)(1 − e−λfT1)]. Plugging
these results into (7) yields

hFIFO-2
f =

λfT2

1 + λf (D̄ + T2) + 1

(1+λfT1)(1−e−λfT1)

. (18)

Here, T1 is solvable from cache 1’s characteristic equation:∑
f∈F h

FIFO
f = C1 (C1: size of cache 1), and T2 is solvable

from cache 2’s characteristic equation:
∑
f∈F h

FIFO-2
f = C.

2) Renewal Arrivals: Under renewal arrivals, similar ar-
guments show that E[X1] = 1 + E[mf (D)] for stage 1,
and E[X2] = E[mf (D + T2)] − E[mf (D)] for stage 2,
both expectations over D. For stage 3, the arguments in
Section III-D1 show that

Pr{X3 = m}=

{
mf (T1)

1+mf (T1) if m = 0,
1

1+mf (T1) (1−Gf (T1))m−1Gf (T1) o.w.,
(19)

where mf (T1)/(1 +mf (T1)) is the hit ratio of cache 1
obtained from (2) (where D = 0). Thus, E[X3] = 1/[(1 +
mf (T1))Gf (T1)]. Plugging these results into (7) yields

hFIFO-2
f =

E[mf (D + T2)]− E[mf (D)]

1 + E[mf (D + T2)] + 1
(1+mf (T1))Gf (T1)

, (20)

where T1 and T2 can be computed from (6).

E. TTL Approximation for Random-2

The analysis for Random-2 is very similar to that for FIFO-
2, as both a FIFO cache and a Random cache behave like TTL
caches with non-reset timers [32]. The difference, however, is
that the timeout values for a Random cache are exponentially
distributed (instead of being a constant as for FIFO), with a
mean that equals the cache characteristic time. Specifically,
each renewal period of Random-2 is still structured as in
Fig. 3, except that T2 and T1 are exponential random vari-
ables2, with means T̄2 and T̄1 that are the characteristic times
of cache 2 and cache 1, respectively.

1) Poisson Arrivals: Similar to Section III-D1, we have
E[X1] = 1 +λf D̄, and E[X2] = λf T̄2. However, the analysis
of X3 is different. Under the independence assumption of the
two caches [8], the first request in stage 3 results in a hit in
cache 1 (i.e., X3 = 0) with probability λf T̄1/(1 + λf T̄1),
i.e., the hit ratio of cache 1 according to (3). Otherwise, each
subsequent request results in a miss in cache 1 if and only
if its inter-arrival time from the previous request is greater
than the TTL of the content ID inserted into cache 1 by the
previous request. Since the inter-arrival time and the TTL of
cache 1 are both exponentially distributed with means 1/λf
and T̄1, respectively, the inter-arrival time is greater than the
TTL with probability 1/(1 + λf T̄1). Thus,

Pr{X3 = m}=
(

1

1 + λf T̄1

)m(
λf T̄1

1 + λf T̄1

)
, m ≥ 0, (21)

2More precisely, the TTL of each arrival into cache i (i = 1, 2) is an
independent exponential random variable with mean T̄i.

5

which implies that E[X3] = 1/(λf T̄1). Plugging these results
into (7) yields

hRandom-2
f =

λf T̄2

1 + λf (D̄ + T̄2) + 1
λf T̄1

, (22)

where T̄1 is the solution to
∑
f∈F h

Random
f = C1 (C1: size of

cache 1), and T̄2 is the solution to
∑
f∈F h

Random-2
f = C.

2) Renewal Arrivals: Similar to Section III-D2, we have
E[X1] = 1 +E[mf (D)] for stage 1, and E[X2] = E[mf (D+
T2)] − E[mf (D)] for stage 2, except that the second ex-
pectation is over both D and T2. For stage 3, the argu-
ments in Section III-E1 show that X3 = 0 with probability
E[mf (T1)]/(1 + E[mf (T1)]) (expectation over T1), which is
the hit ratio of cache 1. Otherwise, for m = 1, 2, . . .,

Pr{X3=m}= E[Gf (T1)]

1 + E[mf (T1)]
(1− E[Gf (T1)])

m−1
, (23)

where 1− E[Gf (T1)] (expectation over T1) is the probability
for an inter-arrival time to be greater than the TTL of cache 1.
Thus, E[X3] = 1/((1 + E[mf (T1)])E[Gf (T1)]). Plugging
these results into (7) yields

hRandom-2
f =

E[mf (D + T2)]− E[mf (D)]

1 + E[mf (D + T2)] + 1
(1+E[mf (T1)])E[Gf (T1)]

.

(24)

Here, the only unknown parameters are the means T̄i of Ti
for i = 1 and 2, which can be computed from (6).

Remark: Although seemingly similar, (20) and (24) differ
subtly in that Ti (i = 1, 2) is treated as a constant in (20)
but a random variable in (24), which implies that generally
FIFO-2 and Random-2 perform differently in terms of hit
ratio. They perform differently even under IRM, as seen from
(18) and (22). This result is in contrast to the previous result
that FIFO and Random have the same hit ratio under IRM [8].

IV. PERFORMANCE UNDER DOS ATTACK

We now apply the TTL approximation formulas obtained in
Section III to analyze the performance of these policies under
DoS attacks. Assuming that the cache cannot distinguish
requests sent by the attacker from those sent by legitimate
users (otherwise it can simply filter out requests from the
attacker), we measure the performance of a given replacement
policy under attack by its average hit ratio for the legitimate
users. Under the TTL approximation, the hit ratios of different
contents are only related through the characteristic time of
the cache. Therefore, attack flows affect the hit ratios of
legitimate flows by affecting the characteristic time.

Specifically, let hπ(λf , T) denote the TTL approximation
of the hit ratio of a content with request rate λf at a cache
with policy π and characteristic time T . Given legitimate flows
of individual rates (λf)f∈Fl and a total rate Λl :=

∑
f∈Fl λf ,

we measure the performance of π by∑
f∈Fl

λfh
π(λf , T)

Λl
, (25)

where T implicitly depends on the attack rates (λf)f∈Fa in
addition to the legitimate flow rates (λf)f∈Fl . We will focus
on IRM in the rest of this section for explicit insights, although
our approach is extensible to more general cases.

A. Optimal Attack Strategy

To understand the fundamental performance limit under
DoS attacks, we first identify the optimal attack strategy
against each policy. In particular, while a higher attack rate
will always bring more damage, it also incurs a higher cost
to the attacker. Therefore, the optimal attack strategy should
make the best use of a given total attack rate.

1) Attack Rate Allocation: Given the total attack rate Λa,
let A ⊆ {(λf)f∈Fa : λf ≥ 0,

∑
f∈Fa λf = Λa, |Fa| = Ca}

be the set of candidate rate allocations among Ca attack flows.

Theorem IV.1. If the characteristic time T is constant for all
(λf)f∈Fa ∈ A, and hπ(λf , T) is an increasing function of T
and a concave function of λf , then the optimal attack strategy
in A that minimizes (25) is to equally allocate the total attack
rate, i.e., λf = Λa/Ca for all f ∈ Fa.

Proof. Since the hit ratio of each legitimate content is increas-
ing in T , the most effective attack strategy should minimize
T . From the characteristic equation:∑

f∈Fl

hπ(λf , T) +
∑
f∈Fa

hπ(λf , T) = C, (26)

we know that minimizing T , which will minimize the first term
on the left-hand side of (26), is equivalent to maximizing the
second term. This leads to a constrained optimization problem:

max
∑
f∈Fa

hπ(λf , T) (27a)

s.t. (λf)f∈Fa ∈ A. (27b)

Since T can be treated as a constant and hπ(λf , T) is concave
in λf , we have

1

Ca

∑
f∈Fa

hπ(λf , T) ≤ hπ(

∑
f∈Fa λf

Ca
, T) = hπ(

Λa
Ca

, T), (28)

achieved when λf = Λa/Ca for all f ∈ Fa.

We have verified that under IRM, all the policies considered
in Section III satisfy the conditions in Theorem IV.1. Specif-
ically, it is easy to verify that all the hit ratios are increasing
in the characteristic time of the (real) cache. For the two-
staged policies (LRU-2, FIFO-2, and Random-2), the hit ratio
is also increasing in the characteristic time of the virtual cache.
Moreover, for FIFO and Random, it is also easy to verify by
checking the sign of the second derivative that the hit ratios
are concave in the request rate. The same holds for LRU and
q-LRU if D̄ is sufficiently small and eλfT ≥ (1 − q)/q. For
the two-staged policies, analytical analysis of the concavity
of the hit ratio as a function of the request rate becomes
intractable, but we have verified numerically that the hit
ratios are also concave in the request rate. Finally, while

6

0 50 100 150 200 250 300

T
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h

it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LRU, q-LRU, LRU-2

FIFO, Random,

FIFO-2, Random-2

(a) real cache characteristic time

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
it
 r

a
ti
o

LRU-2

FIFO-2

Random-2

Random-2, FIFO-2

LRU-2

(b) virtual cache characteristic time

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(c) request rate

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

skewness

0

100

200

300

400

500

600

700

800

900

c
h

a
ra

c
te

ri
s
ti
c
 t

im
e

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(d) skewness of attack rates
Fig. 4. Verifying conditions of Theorem IV.1 (parameters of legitimate flows as in Section VI-A1, Λa = 1000, Ca = 1000).

the characteristic time will change under highly skewed rate
allocations, it remains largely constant for a wide range of
skewness parameters that correspond to potentially good attack
strategies. See illustrative plots in Fig. 4 (similar observations
hold under other parameter settings).

2) Optimal #Attack Flows: Under a fixed total attack rate
and equal rate allocation, the attack strategy is fully determined
by the number of attack flows Ca. In theory, we can plug the
rates of legitimate and attack flows into the TTL approximation
formulas to write (25) as a function of Ca, which can then be
minimized to choose the optimal Ca. However, we see from
plugging the hit ratio formulas into the characteristic equation
(6) that the characteristic time T is the solution to a high-order
polynomial or transcendental equation that cannot be solved
in closed form, and thus (25) cannot be written as a closed-
form function of Ca. Instead, we use other means to obtain
insights, starting with the following observation.

Proposition IV.2. Under FIFO, Random, and LRU, Ca =∞
is optimal in minimizing (25) under IRM.

Proof. We prove the statement by arguing that Ca = ∞
minimizes the characteristic time T . Since FIFO and Random
have the same hit ratio under IRM [8], it suffices to show
the above for FIFO and LRU. To this end, we note that T
represents the TTL of a newly inserted content f , which is the
time for the cache to receive requests for C distinct contents
other than f (assumed to be a constant independent of f under
the TTL approximations) [32], [8]. Clearly, under a fixed total
attack rate, associating every attack request with a distinct
content minimizes the TTL and hence (25).

For the more advanced policies that perform selective inser-
tion upon misses, we resort to numerical analysis. Specifically,
as we have verified that the hit ratio is an increasing function
of the characteristic time, it suffices to examine what value
of Ca will minimize the characteristic time under each policy.
Results under a sample parameter setting is shown in Fig. 5,
but similar observations hold under other settings.

These results imply the following attack strategies:
1) Mice-flow attack, which sends as many attack flows as

possible, each with a small rate, is most effective under
the policies covered by Proposition IV.2.

2) Elephant-flow attack, which sends fewer attack flows such
that each of them has a sufficiently high rate (relative to
the legitimate flows), is most effective under policies with

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
a

104

0

10

20

30

40

50

60

c
h

a
ra

c
te

ri
s
ti
c
 t

im
e

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

Fig. 5. Optimizing #attack flows (parameters in Section VI-A1, Λa = 1000).

selective insertion and discriminate eviction rules (e.g., q-
LRU, LRU-2).

3) Medium-flow attack, with an intermediate number of at-
tack flows, is most effective under policies with selective
insertion but indiscriminate eviction rules (e.g., FIFO-2,
Random-2).

For example, under the setting in Fig. 5, the optimal Ca for
q-LRU and LRU-2 is around 1000, which makes the rates
of attack flows comparable to that of the largest legitimate
flow, hence suggesting an elephant-flow attack; the optimal
Ca for FIFO/Random-2 is around 6000, leading to much
smaller attack flows (smaller than the top 6 legitimate flows),
suggesting a medium-flow attack; under FIFO, Random, and
LRU, the attack becomes more effective as Ca increases, as
predicted by Proposition IV.2, suggesting a mice-flow attack.

Remark: Although we use the average hit ratio as the
performance metric, the optimal attack strategy will remain
the same even if the adversary only targets at a specific flow
or a subset of flows, as the hit ratio of every flow is increasing
in the characteristic time.

B. Impact on Cache Performance

Given the optimal attack strategies, we can now plug them
into the TTL approximation formulas of various policies to
analyze the impact of the attacks on the hit ratios for legitimate
users. Below, we only show the predicted hit ratio according
to (25); validation based on actual hit ratios will be presented
later in Section VI.

As the optimal attack will allocate equal rate to all the
attack flows, it suffices to parameterize an attack by the total
attack rate Λa and the number of attack flows Ca. We start
by confirming our previous observations regarding the optimal
design of Ca under a fixed total attack rate λaCa in Fig. 6 (a).
As in Fig. 5, we see that the policies divide into three groups:
(i) FIFO, Random, and LRU are most vulnerable to mice-
flow attacks corresponding to large Ca, (ii) q-LRU and LRU-2

7

0 1 2 3 4 5 6 7 8 9 10

C
a

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
a

v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LFU

(a) λa · Ca = 1000

0 1 2 3 4 5 6 7 8 9 10

C
a

104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LFU

LRU-2

Random (= FIFO)

(b) mice-flow attack (λa = 0.001)

400 600 800 1000 1200 1400 1600 1800 2000

C
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LFU

LRU-2

Random

(= FIFO)

FIFO-2,

Random-2

(c) elephant-flow attack (λa = 1)

500 1000 1500 2000 2500 3000 3500 4000

C
a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LFU

LRU-2

FIFO/Random-2

LRU

q-LRU

(d) medium-flow attack (λa = 0.167)

Fig. 6. Predicted performance under DoS attack (parameters of legitimate
flows as in Section VI-A1, under which λf ∈ [0.0002, 1] for f ∈ Fl).

are most vulnerable to elephant-flow attacks corresponding to
relatively small Ca (≈ 1000), and (iii) FIFO-2 and Random-2
are most vulnerable to medium-flow attacks corresponding to
an intermediate Ca (≈ 6000).

While the behaviors of FIFO, Random, and LRU have
been explained by Proposition IV.2, the behaviors of the other
policies also have intuitive explanations. Specifically, we know
that q-LRU and LRU-2 closely approximate LFU [8], which
only serves the largest C flows. Hence, these policies will
effectively preserve the hit ratio for legitimate users if the
largest C flows do not include attack flows, but severely
degrade this value as more and more of the largest C flows
become attack flows. To illustrate this point, we fix the rate
per attack flow at λa and vary the number of attack flows
Ca, as shown in Fig. 6 (b–d). We have also added the curve
for LFU. The results confirm that LFU and its approximations
(e.g., LRU-2) are resilient to mice-flow attacks but vulnerable
to elephant-flow attacks; under medium-flow attacks, these
policies still guarantee service for the largest few legitimate
flows, thus achieving an intermediate performance. Moreover,
we see that which policy performs the best will vary based on
the attack strategy and the number of attack flows.

V. ATTACK-AWARE POLICY SELECTION

We further exploit the use of attack-resilient replacement
policies as a second line of defense, in scenarios where efforts
to prevent/detect attacks have failed and the cache cannot
distinguish legitimate requests from malicious requests.

The results from Section IV-B suggest that no single re-
placement policy can maximize the hit ratio for legitimate
users in all the attack scenarios. Therefore, the policy needs
to be adapted based on the current level of attack, where the
TTL approximations can provide valuable information.

Specifically, while the exact rates of attack flows (λf)f∈Fa
are hard to estimate (because the cache does not know which
flows are attack flows), it is often possible to estimate coarse
parameters of the attack, such as the number of attack flows Ca

and their total rate Λa. For example, by comparing the current
number and total rate of flows to the expected values from
the history, we can use the surplus (if any) to estimate these
parameters for a suspected DoS attack. From Section IV-A,
we know that the optimal attack strategy under these estimated
parameters is to send Ca flows of equal rate λa := Λa/Ca.
Therefore, we can obtain a conservative estimate of the
legitimate users’ average hit ratio by identifying Ca of the
current flows with rates around λa and a total rate around Λa
as “attack flows” and considering the rest as legitimate flows.

Let F denote the current set of flows and Fa the estimated
subset of attack flows. Let Π denote the set of candidate
policies. We can use the TTL approximations to select the
best policy in Π as follows:

1) for each candidate policy π ∈ Π, solve the characteristic
equation

∑
f∈F h

π(λf , T) = C for the characteristic
time T under policy π;

2) based on the calculated characteristic times, estimate the
average hit ratio h̄π of the legitimate flows under each
π ∈ Π by (25), where Fl := F \ Fa;

3) select the policy π∗ with the maximum h̄π .
Remark: The above method of estimating attack flows is not

meant to accurately detect the attack flows; instead, we only
use it to compute a conservative estimate of the hit ratio for
legitimate flows, while the actual hit ratio can only be higher
if the attack flows are different from our estimate (as long as
there are no more than Ca attack flows of a total rate no more
than Λa). Moreover, when the cache cannot maintain the exact
flow rates (λf)f∈F (e.g., due to memory limitation), we can
use approximations, e.g., computed by sketching [33].

VI. PERFORMANCE EVALUATION

We evaluate the proposed solutions on both synthetic and
real request processes, in the scenario where the cache repre-
sents a flow table at an SDN switch. Functioning as a cache
of flow rules from the controller, the flow table is particularly
vulnerable to DoS attacks due to its small size as shown
in [10], [21], [25], [22], [23], [24]. In this context, a “request”
is an incoming packet, a “content” is a flow rule, and the
access delay is the time for the switch to query the controller
and install a new rule upon a table miss. “Hit ratios” in the
sequel always refer to the hit ratios of legitimate flows.

A. Simulation Setting

We set the cache size C = 1000 according to the flow
table size of commodity switches [34], and the average access
delay D̄ = 20 ms according to the performance of such
switches [35]. We set q = 0.15 for q-LRU. We generate attack
flows as independent Poisson processes of rates to be specified
later. We generate legitimate flows in two ways:

1) Synthetic simulation: To verify our theoretical predic-
tions, we generate |Fl| = 5000 Poisson processes with total
rate Λl = 10 packets/ms and a Zipf(α) popularity distribution
with skewness α = 1. Here, |Fl| is set according to the
maximum number of active flows (90% of the time) at a
data center switch [36], Λl according to the average rate of

8

0 0.005 0.01 0.015 0.02 0.025

f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h

it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(a) vs. λf (D̄ = 20)

0 10 20 30 40 50 60 70 80 90 100

access delay

0.55

0.6

0.65

0.7

0.75

0.8

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(b) vs. D̄

Fig. 7. Accuracy of TTL approximation (◦: simulated; —: predicted).

the corresponding traces [37], and α according to the typical
skewness of these traces.

2) Trace-driven simulation: To validate our findings made
under the IRM assumption, we also use real traces as legiti-
mate flows. To this end, we use the UNI2 dataset from [37],
which contains 9 trace files, each containing 29, 312–47, 807
flows of a total rate between 9.84 and 11.31 packets/ms.
From each file, we extract 10 traces of 10, 000 packets from
disjoint time periods with sufficiently many active flows. It is
known [36] that these traces deviate from Poisson processes.

B. Results

1) Accuracy of TTL Approximation: To verify the accuracy
of our TTL approximation formulas, we compare the simulated
and the predicted hit ratios for each flow generated as in
Section VI-A1 without any attack. The results in Fig. 7 (a)
show that the prediction by our formulas is highly accurate
under IRM. We further vary the access delay and evaluate
the average hit ratio over all the flows in Fig. 7 (b). Besides
verifying the accuracy of our formulas, this result also demon-
strates the value of considering access delays, as ignoring such
delays can cause significant overestimation of the hit ratios.

2) Impact of DoS Attack: Next, we evaluate the average
hit ratio for legitimate users under DoS attacks. For Poisson
traffic (Fig. 8), the TTL approximations accurately predict the
performance for legitimate users under a wide range of attacks,
thus validating our observations in Section IV-B (similar
results hold under medium-flow attack, omitted for space).
For the traces, as the flows and their rates vary from trace to
trace, we plot the distribution of average hit ratios of all the
traces under three representative attack strategies (Fig. 9 (a–
c)). We see that while the prediction is no longer exact, it
captures important trends: (i) simple indiscriminate policies
(e.g., FIFO, Random) are resilient to elephant-flow attacks but
vulnerable to other attacks; (ii) highly discriminative policies
(e.g., LRU-2) are resilient to mice/medium-flow attacks but
vulnerable to elephant-flow attacks; (iii) two-staged policies
with indiscriminate eviction rules (e.g., FIFO-2, Random-2)
are resilient to both mice-flow and elephant-flow attacks but
vulnerable to medium-flow attacks with suitable rates. These
results validate our observation in Section V that no single
policy can optimize the performance in all the attack scenarios.

3) Performance of Policy Selection: Since Fig. 9 (a–c)
already show that the TTL approximations can guide us to
the best policy under static attacks, we now focus on time-
varying attacks. To this end, we simulate a hybrid attack,

0 1 2 3 4 5 6 7 8 9 10

C
a

104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(a) mice-flow attack (λa = 0.001)

400 600 800 1000 1200 1400 1600 1800 2000

C
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
v
g

 h
it
 r

a
ti
o

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

(b) elephant-flow attack (λa = 1)

Fig. 8. Impact of DoS attack on synthetic traffic (◦: simulated; —: predicted).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

avg hit ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LRU-2

FIFO

Random

(a) mice-flow attack (λa = 0.001)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

avg hit ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LRU, LRU-2,

q-LRU

FIFO-2

(b) elephant-flow attack (λa = 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

avg hit ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

LRU-2

FIFO

Random

(c) medium-flow attack (λa = 0.167)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

avg hit ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F FIFO

Random

LRU

q-LRU

LRU-2

FIFO-2

Random-2

Agaptive

single-staged policies

two-staged policies

(d) hybrid attack

Fig. 9. Impact of DoS attack on traces under total attack rate 1000 (solid:
simulated; dashed: predicted).

where for each trace, attack traffic is sent according to the
mice-flow attack in Fig. 9 (a) for the first 1/3 of the trace,
the medium-flow attack in Fig. 9 (c) for the second 1/3 of the
trace, and the elephant-flow attack in Fig. 9 (b) for the last 1/3
of the trace; similar results hold under other orders of applying
these attack strategies (omitted for space). The intuition is to
take advantage of the fact that none of the policies is resilient
against all these attacks. Fig. 9 (d) shows the distribution of
the average hit ratio over all the traces. We see that (i) the
adaptive policy selection scheme achieves a better performance
than any single policy under the hybrid attack by combining
the strengths of different policies, and (ii) two-staged policies,
especially FIFO-2, are more robust than single-staged policies.

VII. CONCLUSION

Inspired by empirical studies that showed poor performance
of normally good replacement policies under DoS attacks, we
performed a systematic study of the attack resilience of a set of
state-of-the-art policies using the tool of TTL approximations.
After incorporating access delays into these approximations,
we used them to design the optimal attack strategy against each
policy and develop an attack-aware policy selection scheme.
Our case study in SDN validated our solutions, particularly
that the proposed policy selection scheme can effectively
improve the attack resilience of the cache. Our results also
identified two-staged policies, especially FIFO-2, as an attack-
oblivious option with relatively good resilience.

9

REFERENCES

[1] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, p. 374–398, Dec. 2003.
[Online]. Available: https://doi.org/10.1145/954339.954341

[2] W. Ali, S. M. Shamsuddin, A. S. Ismail et al., “A survey of web caching
and prefetching,” Int. J. Advance. Soft Comput. Appl, vol. 3, no. 1, pp.
18–44, 2011.

[3] Kin-Yeung Wong, “Web cache replacement policies: a pragmatic ap-
proach,” IEEE Network, vol. 20, no. 1, pp. 28–34, 2006.

[4] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,
“Adaptive ttl-based caching for content delivery,” IEEE/ACM Transac-
tions on Networking, vol. 26, no. 3, pp. 1063–1077, June 2018.

[5] I. Abdullahi, S. Arif, and S. Hassan, “Survey on caching approaches
in information centric networking,” Journal of Network and Computer
Applications, vol. 56, pp. 48–59, 2015.

[6] S. Alouf, N. Choungmo Fofack, and N. Nedkov, “Performance
models for hierarchy of caches: Application to modern DNS
caches,” Performance Evaluation, vol. 97, pp. 57–82, Mar. 2016,
performance Evaluation Methodologies and Tools: Selected Papers
from VALUETOOLS 2013. [Online]. Available: https://hal.inria.fr/
hal-01258189

[7] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations
of the cache replacement algorithms LRU(m) and h-LRU,” in 2016 28th
International Teletraffic Congress (ITC 28), vol. 01, 2016, pp. 157–165.

[8] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, vol. 1,
no. 3, May 2016.

[9] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen, “Internet cache
pollution attacks and countermeasures,” in Proceedings of the 2006 IEEE
International Conference on Network Protocols, 2006, pp. 54–64.

[10] M. Yu, T. He, P. McDaniel, and Q. K. Burke, “Flow table security in
SDN: Adversarial reconnaissance and intelligent attacks,” in INFOCOM,
2020.

[11] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of ttl
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[12] “Open vSwitch 2.14.90 Documentation,” https://docs.openvswitch.org/
en/latest/.

[13] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[14] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check
before storing: What is the performance price of content integrity
verification in lru caching?” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 3, p. 59–67, Jul. 2013. [Online]. Available: https:
//doi.org/10.1145/2500098.2500106

[15] B. Jiang, P. Nain, and D. Towsley, “On the convergence of the TTL
approximation for an LRU cache under independent stationary request
processes,” ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, vol. 3, no. 4, September 2018.

[16] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th
International Teletraffic Congress, 2012.

[17] A. Dabirmoghaddam, M. Dehghan, and J. J. Garcia-Luna-Aceves,
“Characterizing interest aggregation in content-centric networks,” in
IFIP Networking, May 2016.

[18] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley, “On the
analysis of caches with pending interest tables,” in ICN, September 2015.

[19] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A survey of secu-
rity attacks in information-centric networking,” IEEE Communications
Surveys Tutorials, vol. 17, no. 3, pp. 1441–1454, 2015.

[20] Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the
vulnerability of flow table overflow in software-defined networks: Attack
model, evaluation, and defense,” Security and Communication Networks,
pp. 1–15, January 2018.

[21] J. Cao, M. Xu, Q. Li, K. Sun, Y. Yang, and J. Zheng, “Disrupting
sdn via the data plane: A low-rate flow table overflow attack,” in
SECURECOMM, 2017.

[22] Y. Qian, W. You, and K. Qian, “Openflow flow table overflow attacks
and countermeasures,” in IEEE EuCNC, 2016.

[23] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending
against flow table overloading attack in software-defined networks,”

IEEE Transactions on Services Computing, vol. 12, no. 2, pp. 231–246,
March-April 2019.

[24] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in ACM CCS, November 2013.

[25] J. Weekes and S. Nagaraja, “Controlling your neighbour’s bandwidth
for fun and for profit,” in Security Protocols, 2017.

[26] H. M. Sun, W. H. Chang, S. Y. Chang, and Y. H. Lin, “DepenDNS:
Dependable mechanism against DNS cache poisoning,” in Cryptology
and Network Security. New York, NY, USA: Springer-Verlag, 2009,
p. 174–188.

[27] C. Ghali, G. Tsudik, and E. Uzun, “Needle in a haystack: Mitigating
content poisoning in named-data networking,” in SENT Workshop at
NDSS, 2014.

[28] T. Kamimoto, K. Mori, S. Umeda, Y. Ohata, and H. Shigeno, “Cache
protection method based on prefix hierarchy for content-oriented net-
work,” in 2016 13th IEEE Annual Consumer Communications Network-
ing Conference (CCNC), 2016, pp. 417–422.

[29] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “A system
for denial-of-service attack detection based on multivariate correlation
analysis,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 2, pp. 447–456, 2014.

[30] H. Park, I. Widjaja, and H. Lee, “Detection of cache pollution attacks
using randomness checks,” in 2012 IEEE International Conference on
Communications (ICC), 2012, pp. 1096–1100.

[31] M. Xie, I. Widjaja, and H. Wang, “Enhancing cache robustness for
content-centric networking,” in IEEE INFOCOM, 2012.

[32] N. Choungmo-Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L.
Goeckel, “On the performance of general cache networks,” in Value-
Tools, December 2014, p. 106–113.

[33] Y. Fu, D. Li, S. Shen, Y. Zhang, and K. Chen, “Clustering-preserving
network flow sketching,” in INFOCOM, 2020.

[34] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
January 2015.

[35] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in
SOSR, 2016.

[36] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, 2010.

[37] T. Benson, “Data set for IMC 2010 data center measurement,” http:
//pages.cs.wisc.edu/∼tbenson/IMC10 Data.html.

10

