
1

Stealthy DGoS Attack: DeGrading of Service under
the Watch of Network Tomography

Cho-Chun Chiu, Student Member, IEEE and Ting He, Senior Member, IEEE

Abstract—Network tomography is a powerful tool to monitor
the internal state of a closed network that cannot be measured di-
rectly, with broad applications in the Internet, overlay networks,
and all-optical networks. However, existing network tomography
solutions all assume that the measurements are trust-worthy,
leaving open how effective they are in an adversarial environment
with possibly manipulated measurements. To understand the
fundamental limit of network tomography in such a setting,
we formulate and analyze a novel type of attack that aims at
maximally degrading the performance of targeted paths without
being localized by network tomography. By analyzing properties
of the optimal attack strategy, we formulate novel combinatorial
optimizations to design the optimal attack strategy, which are
then linked to well-known NP-hard problems and approxima-
tion algorithms. As a byproduct, our algorithms also identify
approximations of the most vulnerable set of links that once
manipulated, can inflict the maximum performance degradation.
Our evaluations on real topologies demonstrate the large poten-
tial damage of such attacks, signaling the need of new defenses.

Index Terms—Network tomography, Denial of Service attack,
combinatorial optimization, approximation algorithm.

I. INTRODUCTION

Timely and accurate knowledge of network internal state
(e.g., link delays/jitters/loss rates/bandwidths) is essential for
many network management functions such as traffic engineer-
ing, load balancing, and service placement, which actively
adapt control parameters such as the routes, the rates, and
even the destinations (e.g., via service placement) according
to the current network state.

Traditionally, network administrators obtain the network
state by directly measuring internal network elements through
local support (e.g., SNMP agents) or special diagnostic tools
(e.g., traceroute). This approach has the limitation that it
requires the support of internal network devices, e.g., to run
SNMP agent or respond to ICMP probes, which has severe
limitations in networks where such support is unreliable [2],
[3], [4] or unavailable [5], [6].

Network tomography [7] provides a powerful approach for
monitoring the internal state of closed networks. Instead of
directly measuring the internal elements, network tomography
infers the states of these elements (e.g., link delays) from
end-to-end measurements (e.g., path delays) between special
nodes participating in monitoring, referred to as monitors.
As network tomography only requires the cooperation from
monitors, it has broad applications in monitoring networks
where only a subset of nodes cooperate, e.g. the Internet [2],
[3], [4], overlay networks [8], and all-optical networks [5], [6].

C. Chiu (cuc496@psu.edu) and T. He (tzh58@psu.edu) are with the
Pennsylvania State University.

A preliminary version of this work was presented at INFOCOM’20 [1].
The research was sponsored by NSF under Award Number 1813219.

ෝ𝒙 = R-1 yinference:

R x = y

cp

probe

probe

E F

HG

x1 x2

measurement:

(a)

y1

y2

ෝ𝒙 = R-1 y’inference:

R x + z = y’

cp

probe

probe

E F

HG

x1 x2

measurement:

(b)

y’1

y’2

Fig. 1. (a) network tomography in benign setting; (b) network
tomography in adversarial setting.

Despite substantial research on network tomography, most
existing solutions hinge on a fundamental assumption: the
measurements correctly reflect the performance of measure-
ment paths. Consider the canonical application of inferring
additive link metrics (e.g., delays, jitters, log-success rates)
from the sum metrics on measurement paths. As illustrated
in Fig. 1 (a), normally the measured path metrics will equal
the sum of link metrics on each path, yielding a linear
observation model: Rx = y, where x = (xj)lj∈L is the
column vector of unknown link metrics (L: set of links),
y = (yi)pi∈P is the column vector of measured path metrics
(P : set of measurement paths), and R = (rij)pi∈P,lj∈L is
the measurement matrix with rij ∈ {0, 1} indicating whether
path pi traverses link lj . Network tomography infers the link
metrics by “inverting” the observation model, i.e., solving for
x̂ that satisfies Rx̂ = y (the solution may not be unique).

However, if some links are controlled by an attacker (re-
ferred to as compromised links) as illustrated in Fig. 1 (b), then
the attacker can manipulate the measurements on paths travers-
ing these links, e.g., by introducing additional delays, jitters, or
losses. This yields a modified observation model: Rx+z = y′,
where y′ is the vector of observed path metrics under the
attack, and z = (zi)pi∈P is the vector of manipulations
controlled by the attacker. For example, the attacker can be a
malicious Internet Service Provider (ISP) [9] that tries to attack
a targeted content provider, whose paths to clients are modeled
by P , from a set of links it controls in the public Internet. An-
other example is a hacker that launches an attack on a targeted
institutional network by remotely controlling its backdoor-
infected routers [10]. Note that the modified observation
model is different from R(x+z) = y′, as the attacker can ma-
nipulate packets on different paths differently at the same link,
e.g., delaying packets belonging to one path but not delaying
packets belonging to another path. An unsuspecting network
tomography algorithm will try to explain the measurements
according to the original observation model by trying to find x̂
satisfying Rx̂ = y′. This can cause many issues, such as lack
of feasible solutions [11] and incorrect fault diagnosis [12].

2

In this work, we aim to understand the fundamental limit
of a stealthy attacker in maximally degrading the performance
of end-to-end communications without being localized by net-
work tomography. Such understanding will not only quantify
the limitation of existing network tomography algorithms but
also provide insights for the design of defense mechanisms.

A. Related Work

Since introduced by Vardi [13], network tomography has
expanded to a rich family of network monitoring techniques
that infer network internal characteristics from external mea-
surements [7], [14]. Early works focused on best-effort so-
lutions, which tried to find the most likely network state
from given measurements, obtained by unicast [15], [16], [17],
[18], multicast [19], [20], [21], [22], [23], [24], and their
variations (e.g., bicast [25], flexicast [26], and back-to-back
unicast [27], [28], [24]). After observing that an arbitrary set
of measurements is frequently insufficient for identifying all
the link metrics [29], [16], [30], [8], [31], later works aimed
at either reducing ambiguity by imposing a tie breaker (e.g.,
[17], [18], [32]) or relaxing the objective (e.g., [8], [33], [34]),
or ensuring identifiability by carefully designing the monitor
locations and the paths to measure [35], [36], [37], [38], [39],
[6], [40], [41], [42], [43]. All these works assume a benign
setting, where the links behave consistently.

In contrast, very few works have considered network to-
mography in an adversarial setting, where links can behave
inconsistently for different paths. In [11], the problem is
tackled in the context of a non-neutral network, where some
links can discriminate packets sent on different paths. In [12],
the problem is tackled in the context of an attacker that
can manipulate the measurements traversing malicious nodes,
with a primary goal of scapegoating certain benign links as
the cause of poor performance. While our problem setting is
similar to [12], our results differ significantly as explained in
Section II-C.

B. Summary of Contributions

The main contributions of this work are:
1) We formulate a novel attack, called stealthy DeGrading of
Service (DGoS) attack, that aims at maximally degrading the
performances of end-to-end communications by manipulating
the performances of compromised links, without letting these
links localized by network tomography.
2) To understand the fundamental limit of this attack, we
develop algorithms to explicitly design which links to com-
promise and how to manipulate the performances of these
links. We show that selecting which links to compromise is a
novel combinatorial optimization problem that is NP-hard. By
linking this problem to known NP-hard problems, we leverage
existing algorithms to achieve guaranteed approximation.
3) We further consider a budget constraint on the cost of com-
promising links. We show that the constrained link selection
problem is another novel combinatorial optimization problem
that is also NP-hard. By relaxing the objective function, we
again link this problem to a known NP-hard problem that
allows us to leverage an existing approximation algorithm.

4) Our evaluations on real topologies show that the proposed
attack can significantly degrade the communication perfor-
mance (by injecting 4–30 seconds of delay per path) without
exposing the compromised links to network tomography.

Roadmap. Section II formulates our problem. Section III
designs the attack in the unconstrained case, which is evaluated
in Section IV. Section V addresses the constrained case.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the network monitored by network tomography
as an undirected graph G = (N,L), where N is the set of
nodes and L the set of links. Each link lj ∈ L is associated
with an unknown metric xj that describes its performance
(e.g., average link delay). We assume that these link metrics
are additive, i.e., the metric of a path equals the sum of
its link metrics, which is a canonical model representing
important performance metrics including delays, jitters, log-
success rates, and many other statistics.

B. Network Tomography Model

Suppose that a set of users of the above network (or their
proxy) send traffic through G along a set of paths P , and use
network tomography to monitor the received performances at
individual links. Using network tomography to monitor the
performance of individual links from path-level measurements
is a well-established technique that is particularly relevant to
the Internet [14], due to the opaque nature of the ISP networks
to the providers of host-based distributed systems and applica-
tions. In host-based distributed systems such as virtual private
networks (VPNs) and content distribution networks (CDNs),
as well as adaptive applications such as streaming media and
multiplayer gaming, a tomography-based overlay monitoring
system can detect periods of degraded performance within
seconds, thus facilitating informed adaptation of overlay paths
and communication patterns [44].

Let R = (rij)pi∈P,lj∈L be the matrix representation of P ,
called the measurement matrix, where rij ∈ {0, 1} indicates
if path pi traverses link lj . Let ri = (rij)lj∈L be the i-th row
in R. Given the measured path metrics y = (yi)pi∈P , network
tomography seeks to find a solution x̂ to the link metrics that
can explain the measurements, i.e., Rx̂ = y.

We note that the solution is generally non-unique as R may
not be full-column-rank. This issue, known as the lack of
identifiability, has been widely recognized [29], [16], [30],
[8], [31]. Instead of making a limiting assumption that R
must be full-column-rank as in [12], we allow an arbitrary R,
and consider a generic network tomography solver that can
compute the set of all feasible solutions.

C. Attack Model

1) Threat Model: Suppose that an attacker attempts to
degrade the performance of P by manipulating the perfor-
mances of compromised links. Let Lm ⊆ L denote the set of
compromised links and Ln = L\Lm the set of uncompromised
links. Accordingly, the paths Pm ⊆ P traversing at least one

3

compromised link are called compromised paths, and the
remaining paths Pn = P \ Pm are called uncompromised
paths. The attacker can only control the compromised links.

One possible attack scenario is an ISP-based attacker that
tries to degrade the Quality of Service (QoS) of a targeted
content provider as studied in the context of network neu-
trality [11], except that the ISP itself is not involved in the
attack (hence only the links compromised by the attacker will
participate). In this case, P contains all the paths within this
ISP network that are between the gateway router to the content
provider and the other gateway routers. In this scenario, we
model a more intelligent adversary than [11] that avoids
causing infeasibility of the network tomography problem and
thus evades detection by the existing detector in [11]. Similar
scenario exists when targeting a client network.

Another possible attack scenario is an attacker in a legacy
underlay network that tries to degrade the performance of
an overlay network used to implement state-of-the-art control
algorithms [45]. In this case, P contains all the paths within
the underlay network that connect the overlay nodes. In this
scenario, we model a novel type of adversarial intervention
that controls the forwarding performance, complementing the
existing model in [45] that controls the forwarding direction.

Our model implicitly assumes that all the measurement
paths monitored by network tomography are fixed and known
to the attacker. Assuming fixed measurement paths is a
standard assumption in network tomography, which underlies
nearly all tomography-based inference algorithms. Meanwhile,
while the exact set P̃ of paths evaluated by network tomog-
raphy will not be observable to the attacker, the attacker can
construct a possibly larger set P of potential measurement
paths with basic knowledge of the attacked network G, e.g.,
topology, routing, and ingress/egress points (e.g., gateway
routers). If P̃ ⊂ P , it is easy to see that a stealthy attack
designed for P remains stealthy for P̃ (in the sense modeled
by (2)). However, the effectiveness of the attack can be
suboptimal due to unnecessary constraints induced by paths
in P \ P̃ . We will evaluate this case later (see Fig. 10).

2) Attack Optimization: Let z = (zi)pi∈P denote the
vector of manipulations, where zi is the increment in the
metric of path pi ∈ P caused by the attacker. It is easy to
see that z must satisfy the following constraints [12]:

1) Only the metrics of compromised paths can be manipu-
lated, i.e., zi = 0 for any pi ∈ Pn.

2) Path performances can only be degraded (not improved)
due to manipulation, i.e., zi ≥ 0 for any pi ∈ Pm.

Moreover, to stay stealthy, the attacker must preserve feasi-
bility of the network tomography problem to hide the presence
of artificial manipulations, i.e., after the manipulations, there
must exist at least one solution x̂ that satisfies Rx̂ = Rx+ z.
In addition, he must protect the compromised links from
detection. As a concrete example, we consider threshold-based
bad link detection, where the state δj (1: bad, 0: good) for link
lj is inferred as

δj =

{
1 if x̂j > τ,
0 o.w., (1)

Here, τ denotes the detection threshold (e.g., the maximum
normal link delay). Threshold-based detection is widely used

in network monitoring systems (e.g., NetFlow Analyzer [46],
OpManager [47]), and threshold-based bad link detection is a
natural application for network tomography. To evade such
detection, our attack model requires that among all the feasible
solutions to x̂, there must be at least one solution that does not
flag any of the compromised links as bad links. In practice,
there may also be an upper bound on link metrics, denoted
by τmax, e.g., the maximum duration a packet can be buffered
at a network interface without being dropped. To avoid trivial
cases, we assume that xj ≤ τ ≤ τmax for all lj ∈ L.

We formulate the attacker’s goal as the following optimiza-
tion, called the stealthy DeGrading of Service (DGoS) attack:

max
Lm,x̂

∑
pi∈Pm

ri(x̂− x) (2a)

s.t. ri(x̂− x) = 0, ∀pi ∈ Pn, (2b)
ri(x̂− x) ≥ 0, ∀pi ∈ Pm, (2c)
τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (2d)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm, (2e)
Lm ⊆ L. (2f)

This is an optimization of Lm and x̂, where Lm specifies
the links to compromise, and x̂, denoting (one of the feasible
solutions to) the inferred link metrics, is used to compute the
actual manipulations z to inject onto the paths by

z = R(x̂− x). (3)

Computing the manipulations by (3) automatically ensures
feasibility of the network tomography problem. Note that this
does not require the compromised links to behave consistently
across paths, as illustrated in Fig. 2.

In words, the objective (2a) is to maximize the total perfor-
mance degradation on paths in P , measured by the increase in
the sum path metric. Constraints (2b,2c) ensure that manipula-
tions are feasible, i.e., only performed on compromised paths
to degrade the performance. Constraint (2e) ensures that the
attack cannot be localized by network tomography, as all the
compromised links perform normally according to the inferred
link metrics. Note that x̂ only represents the link performances
perceived by network tomography, which are generally not
the same as the actual link performances. As is shown later,
an intelligent attacker can leverage this difference to inject
performance degradation on end-to-end communications at
compromised links, while causing network tomography to
blame the degradation on some uncompromised links (thus
keeping the compromised links undetected). Note that this
attack is only designed to evade threshold-based detection; for
more sophisticated detection systems (e.g., those examining
the distribution of link metrics), randomization of the upper
bounds in (2d)–(2e) will be needed to generate a plausible x̂.

Remark 1: The above formulation is based on an optimistic
constraint, i.e., there exists a possible solution to the link
metrics that does not flag any of the compromised links as bad
links, which ensures that the provider cannot say for sure that
any of the attacker-controlled links is the cause of poor end-
to-end performance. In the case of rank-deficient R, there will
be other solutions that possibly flag some of these links. One
way of achieving stronger stealthiness is to include additional
constraints to ensure that the desired x̂ will be the solution

4

selected by network tomography (e.g., flagging the fewest
links among all possible solutions), which requires additional
knowledge of the adopted network tomography algorithm. The
strongest stealthiness is achieved by requiring that no feasible
solution to Rx̂ = Rx + z will flag any of the compromised
links. As a first step towards understanding the potential
damage of DGoS attacks, we will focus on the formulation in
(2) and empirically evaluate its stealthiness under a practical
tomography-based detector (see Fig. 11), while leaving the
detailed study of other formulations to future work. Note that
in the case of full-column-rank R as assumed previously [12],
these formulations become the same.

Remark 2: For clarity, we will present all the results from
the perspective of an attacker. However, our results can also
be interpreted from the perspective of a network provider that
uses network tomography to validate link performances. In this
case, the optimal objective value of (2) reveals the maximum
damage that an in-network adversary can inflict on end-to-end
communications without being localized, and the correspond-
ing decision variables (particularly Lm) specify the most vul-
nerable links that can be manipulated to inflict the maximum
damage. Thus, our results can be used to analyze network
vulnerability and recommend high-value links to protect.

Remark 3: Our work differs fundamentally from the existing
works [11], [12] that also considered network tomography in
an adversarial setting. Specifically, although [11] proposed
an algorithm to detect links that behave inconsistently on
different paths (i.e., non-neutral links), the algorithm only
works when the inconsistent links cause infeasibility of the
network tomography problem, and thus cannot handle our at-
tack model that always ensures feasibility. Moreover, although
the attack model studied in [12] is conceptually similar to ours
in that the attacker also tries to fool network tomography while
degrading path performances, their results substantially differ
from ours in that: (i) the attacker in [12] is required to mislead
network tomography to detect certain uncompromised links
as bad links, while we do not impose such constraints; (ii)
[12] assumes the measurement matrix to be full-column-rank,
which is frequently violated in practice [29], [16], [30], [8],
[31], while we do not make such an assumption; (iii) most
importantly, [12] assumes that the set Lm of compromised
links is given, while we treat it as a decision variable, which
allows us to model a more intelligent attacker that strategically
places its attack. In fact, as is shown later, the selection of Lm

significantly impacts the capability of an attack and is thus the
focus of our work. Our solutions on optimizing Lm can also
be used to identify the most vulnerable links to protect from
a network provider’s perspective.

D. Example
Consider the example in Fig. 2 (a). Suppose that before

the attack, each link has a delay of 10 ms, τ = 150 ms, and
τmax = 2000 ms. Fig. 2 (b) shows the optimal manipulations
under an intuitive selection of Lm—compromising all the
links. In this case, the attack can cause 2240 ms of extra
delay in total, by injecting a delay of zi onto path pi at some
of the compromised links traversed by pi. Fig. 2 (c) shows
the optimal manipulations under another selection of Lm,
which, although having fewer compromised links, is able to

Fig. 2. Example: (a) input, (b) optimal manipulations under one Lm,
(c) optimal manipulations under another Lm.

cause 15190 ms of extra delay, as the uncompromised links
l3 and l5 can be used to explain the large delays of paths
p1, p2, p4, p5, p6 to network tomography without exposing the
compromised links. Note that the inferred link metrics can
differ from the actual metrics, and the compromised links can
behave inconsistently across paths, e.g., in Fig. 2 (c), link l1
injects no more than 280 ms of delay onto p3 but 4120 ms
of delay onto p2. This example shows that DGoS attack can
cause large damage without being localized, and the amount
of damage critically depends on the selection of Lm.

III. OPTIMAL ATTACK STRATEGY

Although (2) is a joint optimization of both Lm and x̂,
we will show that the main challenge is in optimizing Lm,
which can be reduced to a novel variation of the minimum
cut problem.

A. Optimizing x̂ under Given Lm

Given the set of compromised links Lm, (2) is a linear
program (LP) in x̂ that can be solved in polynomial time
by standard LP solvers, and the result gives the optimal
manipulation vector (under the given Lm) by (3). Nevertheless,
there are several simplifications that can be used to speed up
the solution for large networks.

First, we observe that constraint (2c) has no effect on the
optimal solution, as it only imposes a lower bound on x̂, while
the objective (2a) tries to increase x̂. We can thus drop this
constraint without changing the optimal solution to x̂.

Furthermore, we observe that the dimension of the solution
space can be reduced. To this end, we rewrite (2) after
dropping constraint (2c) in a vector form:

max
x̂

1|Pm|Rm(x̂− x) (4a)

s.t. Rnx̂ = Rnx, (4b)
φ ≥ x̂ ≥ 0, (4c)

where 1|Pm| is the 1×|Pm| vector of 1’s, Rm = (ri)pi∈Pm
and

Rn = (ri)pi∈Pn
are the sub-measurement matrices represent-

ing all the compromised/uncompromised paths, respectively,
and φ := (φj)lj∈L is the vector of upper bounds on x̂j in
(2d,2e), i.e.,

φj :=

{
τ if lj ∈ Lm,
τmax if lj ∈ Ln.

(5)

The “≥” in (4c) means element-wise ≥.

5

To reduce the dimension for optimization (4), we perform
a change of variable as follows. Since xj ≤ τ (∀lj ∈ L), it
is easy to see that x̂ = x is a feasible solution to (4). Let B
be a matrix whose columns form a basis of null(Rn), the null
space of Rn. Let nullity(Rn) denote the nullity of Rn, i.e., the
dimension of null(Rn). Then x̂ = Bc+ x will always satisfy
Rnx̂ = Rnx for any (nullity(Rn) × 1)-vector c. Substituting
x̂ by Bc + x, (4) is transformed into:

max
c

1|Pm|RmBc (6a)

s.t. φ− x ≥ Bc ≥ −x. (6b)

Compared to (4), the number of decision variables in (6)
is reduced from the number of links to the nullity of Rn. By
the rank-nullity theorem, rank(Rn) + nullity(Rn) = |L|, and
hence the reduction will be significant when rank(Rn) is large,
i.e., the number of linearly independent uncompromised paths
is large.

B. Property of the Optimal Lm

To facilitate the optimization of Lm, we first investigate the
property of the optimal solution. As is shown in Section II-D,
simply compromising all the links is generally suboptimal,
as the attacker will have to make all the link metrics appear
normal (i.e., x̂j ≤ τ for all lj ∈ L), which limits the amount
of performance degradation he can inject on each path.

Generally, compromising a link lj can have two contradict-
ing effects:

1) previously uncompromised paths that traverse lj can
now be controlled by the attacker, which removes some
constraints of the type (2b) and hence may increase the
objective value;

2) instead of constraint (2d), lj will be subject to a tighter
constraint (2e), which may decrease the objective value.

Due to these contradicting effects, it is not obvious what is
the optimal set of links to compromise.

Our main result is a closed-form characterization of the
optimal set of compromised links. To present this result, we
introduce the following definitions.

Definition 1. Given a set of paths P , we define:
1) the traversal number of link l, denoted by wl, as the

number of paths in P that traverse link l;
2) a cut C of P as a subset of links such that every p ∈ P

traverses at least one link in C;
3) the minimum-traversal cut C∗ of P as the cut of P with

the minimum total traversal number, i.e.,
∑

l∈C∗ wl ≤∑
l∈C wl for any cut C.

Theorem III.1. The optimal set of compromised links L∗m
(i.e., the optimal solution to Lm in (2)) is the minimum-
traversal cut of P .

We will prove this theorem in two steps. Step 1 is to show
that L∗m must be a cut of P , as otherwise the attacker will
be able to improve his objective value by compromising one
more link.

Lemma III.2. Suppose that for the initial set of compromised
links L(0)

m , there is at least one uncompromised path pi∗ . Then
there must exist an uncompromised link lj∗ ∈ pi∗ , such that

compromising lj∗ increases the total performance degradation,
i.e., Γ(L

(0)
m ∪ {lj∗}) ≥ Γ(L

(0)
m), where Γ(L′) is the optimal

objective value of (2) when Lm = L′.

Proof. Let L
(0)
m (L(0)

n) be the initial set of compromised
(uncompromised) links, P

(0)
m (P (0)

n) be the initial set of
compromised (uncompromised) paths, and x̂(0) be the optimal
solution to x̂ when Lm = L

(0)
m . By assumption, pi∗ ∈ P (0)

n .
First, we observe that there must exist a link lj∗ ∈ pi∗ for

which x̂(0)j∗ ≤ τ , as otherwise (i.e., x̂(0)j > τ for all lj ∈ pi∗),
we will have ri∗ x̂

(0) > |pi∗ |τ ≥ ri∗x, where |pi∗ | is the hop
count on pi∗ . This contradicts with ri∗ x̂

(0) = ri∗x according
to constraint (2b).

Next, for the above link lj∗ , adding a constraint x̂j∗ ≤
τ to (2) will not change the optimal solution when Lm =

L
(0)
m . That is, x̂(0) remains an optimal solution to the following

optimization in x̂

max
x̂

∑
pi∈P (0)

m

ri(x̂− x) (7a)

s.t. ri(x̂− x) = 0, ∀pi ∈ P (0)
n , (7b)

τmax ≥ x̂j ≥ 0, ∀lj ∈ L(0)
n \ {lj∗}, (7c)

τ ≥ x̂j ≥ 0, ∀lj ∈ L(0)
m ∪ {lj∗}. (7d)

Note that we can omit constraint (2c) as explained in Sec-
tion III-A.

Moreover, after compromising link lj∗ , i.e., for Lm = L
(0)
m ∪

{lj∗}, the optimization (2) becomes

max
x̂

∑
pi∈P (0)

m

ri(x̂− x) +
∑

pi∈P (1)
m \P (0)

m

ri(x̂− x) (8a)

s.t. ri(x̂− x) = 0, ∀pi ∈ P (1)
n , (8b)

τmax ≥ x̂j ≥ 0, ∀lj ∈ L(1)
n , (8c)

τ ≥ x̂j ≥ 0, ∀lj ∈ L(1)
m , (8d)

where L(1)
m (L(1)

n) is the new set of compromised (uncompro-
mised) links, and P (1)

m (P (1)
n) is the new set of compromised

(uncompromised) paths.
Finally, since P (1)

n ⊆ P (0)
n , L(1)

n = L
(0)
n \{lj∗}, and L(1)

m =

L
(0)
m ∪ {lj∗}, any feasible solution to (7) remains feasible for

(8). In particular, x̂(0) is a feasible solution to (8), with an
objective value of

∑
pi∈P (0)

m
ri(x̂

(0) − x) = Γ(L
(0)
m). Thus,

under the optimal solution to (8), the objective value Γ(L
(0)
m ∪

{lj∗}) must be no smaller than Γ(L
(0)
m).

Step 2 is to show that among all the cuts, L∗m must be the
one that minimizes the total traversal number.

Lemma III.3. Among all the cuts of P , the optimal set of
links to compromise is the cut with the minimum total traversal
number.

Proof. By definition, if Lm is a cut of P , then Pm = P and
Pn = ∅, which simplifies (2) for a given Lm to

max
x̂

∑
pi∈P

ri(x̂− x) (9a)

s.t. τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (9b)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm. (9c)

6

It is easy to see that the optimal solution to (9) is x̂j = τ if
lj ∈ Lm and x̂j = τmax if lj ∈ Ln. Under this solution, the
objective value of (9) equals∑

pi∈P
(miτ + (|pi| −mi)τmax)−

∑
pi∈P

rix

= (τ − τmax)
∑
pi∈P

mi + τmax

∑
pi∈P

|pi| −
∑
pi∈P

rix, (10)

where mi is the number of compromised links on path pi and
|pi| is the total number of links on pi. Only the first term
(τ − τmax)

∑
pi∈P mi depends on Lm.

As τ − τmax ≤ 0, maximizing (10) is equivalent to
minimizing

∑
pi∈P mi. We further note that∑

pi∈P
mi =

∑
pi∈P

∑
l∈pi

1l∈Lm
=
∑
l∈Lm

∑
pi∈P

1l∈pi=
∑
l∈Lm

wl, (11)

where 1· is the indicator function. Thus, the optimal solution
to Lm among all the cuts is the cut with the minimum total
traversal number.

Proof of Theorem III.1. By Lemma III.2, L∗m must be a cut
of P . Then by Lemma III.3, it must have the minimum total
traversal number among all the cuts. Therefore, L∗m must be
the minimum-traversal cut.

Remark: The minimum-traversal cut of P may not be
unique. From the proof of Theorem III.1, we see that all the
minimum-traversal cuts are equally optimal.

Theorem III.1 implies that given a set of targeted paths P ,
the optimal set Lm of links to compromise is the solution to
a novel combinatorial optimization problem as follows.

Definition 2. Given a set of paths P , the adversarial link
selection (ALS) problem is to find the cut of P with the
minimum total traversal number.

C. Hardness Analysis
Below we show the hardness of ALS by connecting it to

several well-known hard problems in combinatorial optimiza-
tion in both the general case and a nontrivial special case.

1) Hardness of General ALS: First, consider the general
case of ALS for an arbitrary set of paths P .

Theorem III.4. ALS for an arbitrary path set P is NP-hard.

Proof. To show this, we consider the corresponding decision
problem: determine whether a set of paths P has a cut with a
given total traversal number T . We will prove that the decision
version of ALS is NP-hard by showing a reduction from the
exact cover problem [48].

Given a set of elements of E = {e1, e2, . . . , en} and a
collection S of subsets of E, an exact cover is a subcollection
S∗ of S such that each element in E is covered once and only
once by sets in S∗. To determine if there exists an exact cover
is NP-complete [48].

The exact cover problem can be reduced to the follow-
ing instance of ALS. We construct a set of paths P =
{p1, p2, . . . , pn} in one-one correspondence with the set of
elements E = {e1, e2, . . . , en}. Similarly, we construct a set
of links L = {l1, l2, . . . , lm} in one-one correspondence with
the collection of sets S = {s1, s2, . . . , sm}. The relationship

between the paths and the links is such that link li is traversed
by path pj if and only if set si covers element ej . Note that
such construction is always possible as we allow P to contain
arbitrary paths in the general case of ALS. Then we claim
that there exists an exact cover S∗ of E if and only if the
constructed instance of ALS has a cut with a total traversal
number of |P |.

Suppose that there exists an exact cover S∗, i.e., E ⊆⋃
s∈S∗ s and

∑
s∈S∗ |s| = |E|. According to the above con-

struction, the corresponding set of links C∗ = {li : si ∈ S∗}
must cut each path in P once and only once, and hence C∗

is a cut with a total traversal number of |P |.
Conversely, suppose that the constructed set of paths P has

a cut C∗ with a total traversal number of |P |. By Definition 1,
C∗ must cut each path in P once and only once. According to
the construction, the corresponding subcollection S∗ = {si :
li ∈ C∗} must cover each element in E once and only once,
i.e., S∗ is an exact cover of E.

2) Hardness of all-possible-paths ALS: Now consider a
special case where P contains all possible paths between a
given set K of terminals. This case models networks that
employ advanced routing mechanisms such as source routing
or Software Defined Networking (SDN), that allow traffic to
be routed on any path between a pair of terminals. We call
the ALS problem in this special case all-possible-paths ALS.

All-possible-paths ALS can reduce to the Multiway Cut
problem [49]. Also known as the Multiterminal Cut prob-
lem, the Multiway Cut problem is a graph division problem,
where given an undirected graph G(V,E) with link weights
w : E → R+ and a set of terminals K ⊆ V , we want
to find a subset of links with the minimum total weight to
cut all the paths between the terminals. When the number
of terminals equals 2, the Multiway Cut problem becomes
the min-cut problem, which can be solved efficiently by the
max-flow algorithms. We see that all-possible-paths ALS is
a special case of Multiway Cut, where the weights are the
traversal numbers. We note that the two problems are not
equivalent: in Multiway Cut, the link weights are arbitrary;
in all-possible-paths ALS, the link weights are the traversal
numbers, which are determined by the network topology and
the locations of terminals.

It is known that Multiway Cut is NP-hard, even in a very
special case when all the links have unit weights.

Theorem III.5 ([49]). The Multiway Cut problem is NP-hard
for all |K| ≥ 3, even if all the link weights are equal to 1.

The hardness of all-possible-paths ALS still remains an
open question. Based on Theorem III.5, we conjecture that
all-possible-paths ALS is NP-hard, since it is also a special
case of Multiway Cut.

Fig. 3 summarizes the relationship between ALS and known
NP-hard problems, where the arrows indicate the direction of
reduction. As shown in Section III-D1, ALS can reduce to the
Weighted Set Cover (WSC) problem, which is also NP-hard.

D. Approximation Algorithms

As ALS is NP-hard, there is no polynomial-time exact
algorithm for it unless P = NP. As we mentioned, ALS

7

Fig. 3. Relationship between ALS and known NP-hard problems.

Fig. 4. Reducing ALS to Weighted Set Cover

reduces to Weighted Set Cover (WSC), and all-possible-paths
ALS reduces to Multiway Cut. Below we will use known
approximation algorithms designed for WSC and Multiway
Cut to solve ALS and all-possible-paths ALS, respectively.

1) The greedy algorithm for ALS: Given a set of elements
E = {e1, e2, . . . , en} and a collection S = {s1, s2, . . . , sm}
of subsets of E, where each si has a weight of wi, WSC
aims at finding the subcollection S∗ that covers E with the
minimum total weight.

We reduce ALS (for arbitrary P) to WSC as follows. Given
a set of paths P = {p1, p2, . . . , pn} traversing a set of
links L = {l1, l2, . . . , lm}, we construct a set of elements
E = {e1, e2, . . . , en} in one-one correspondence with the
paths, and a collection of sets S = {s1, s2, . . . , sm} in one-
one correspondence with the links, such that set si covers
element ej if and only if link li is on path pj , as illustrated in
Fig. 4. Each set si has a weight wi that equals the traversal
number of link li. It is easy to see that finding the cut with
the minimum total traversal number is equivalent to finding
the subcollection of sets to cover all the elements with the
minimum total weight. We note that in the constructed instance
of WSC, the weight of a set always equals its cardinality (i.e.,
wi = |si|), and thus ALS is a special case of WSC.

We apply a well-known greedy algorithm [50], designed
for solving WSC, to the ALS problem. The algorithm iterates
until all the paths are compromised, where in each iteration,
it picks a link with the smallest cost-value ratio and adds the
paths traversing it to the set of compromised paths. For a link
l, we define the cost-value ratio by |Pl|

|Pl\Pm| , where Pl is the
set of paths traversing link l. Since the link weight equals |Pl|,
this ratio is the cost we pay for each newly compromised path,
if link l is selected. The pseudocode is shown in Algorithm 1.
The while loop (lines 3–6) is repeated O(|L|) times, each
iteration taking O(|L| · |P |) time (due to line 4), leading to an
overall complexity of O(|L|2|P |).

Although straightforward, this greedy algorithm is known to
have the best approximation guarantee for WSC [50]. Applied
to our problem, it guarantees the following.

Theorem III.6 ([50]). Algorithm 1 achieves an approximation
factor of H|P | = 1 + 1

2 + . . . + 1
|P | = Θ(log |P |) for ALS,

Algorithm 1: ALS Greedy
input : Paths P
output: Compromised links Lm

1 Pm ← ∅;
2 Lm ← ∅;
3 while Pm 6= P do
4 find the link l with the smallest ratio |Pl|

|Pl\Pm| ;
5 Pm ← Pm ∪ Pl;
6 Lm ← Lm ∪ {l};
7 return Lm;

i.e., T greedy ≤ H|P |T opt = Θ(log|P |)T opt, where T greedy is the
total traversal number achieved by Algorithm 1 and T opt is the
minimum total traversal number of all the cuts of P .

However, our ultimate goal is to maximize the performance
degradation measured by (2a). We can substitute

∑
pi∈P mi

by T greedy in (10) to get the corresponding objective value.

Corollary III.7. Using Algorithm 1 to select the compromised
links and the LP (6) to compute the manipulations achieves a
total performance degradation of

(τ − τmax)T greedy + τmax

∑
pi∈P

|pi| −
∑
pi∈P

rix ≥

(τ − τmax)H|P |T
opt + τmax

∑
pi∈P

|pi| −
∑
pi∈P

rix, (12)

where T greedy and T opt are defined as in Theorem III.6.

2) CKR relaxation with rounding for all-possible-paths
ALS: As mentioned in Section III-C2, all-possible-paths ALS
reduces to the Multiway Cut problem, which means we can
apply algorithms for Multiway Cut to all-possible-paths ALS.

Calinescu et al. [51] proposed an approach called CKR
relaxation for Multiway Cut, for which it has been proved
that it is NP-hard to achieve a better integrality gap than CKR
relaxation for any fixed number of terminals, assuming the
Unique Games Conjecture to hold [52]. In a minimization
problem, the integrality gap is the ratio between the objective
value of the optimal integer solution and that of its relaxation,
i.e., OPTint/OPTrelaxation. We first formulate the Multiway Cut
problem as an integer program, and then introduce its CKR
relaxation. Given a set V of nodes, a set E of links with
weights (wv,v′)(v,v′)∈E , and a set K (K ⊆ V) of terminals,
the Multiway Cut problem aims at solving

min
x

1

2

∑
(v,v′)∈E

∑
t∈K

wv,v′ |xv,t − xv′,t| (13a)

s.t.
∑
t∈K

xv,t = 1, ∀v ∈ V, (13b)

xt,t = 1, ∀t ∈ K, (13c)
xv,t ∈ {0, 1}, ∀v ∈ V, t ∈ K, (13d)

where xv,t is the decision variable indicating whether node v
will be connected to terminal t after the cut.

By relaxing the integer constraint (13d) and replacing
|xv,t − xv′,t| by a new variable yv,v′,t, we get the following:

min
x,y

1

2

∑
(v,v′)∈E

∑
t∈K

wv,v′yv,v′,t (14a)

8

TABLE I
APPROXIMATION ALGORITHMS FOR ALS

algorithm case approximation factor
ALS Greedy general Θ(log |P |)
CKR relaxation all-possible-paths α2

s.t.
∑
t∈K

xv,t = 1, ∀v ∈ V, (14b)

xt,t = 1, ∀t ∈ K, (14c)
xv,t ≥ 0, ∀v ∈ V, t ∈ K, (14d)
yv,v′,t ≥ xv,t − xv′,t, ∀(v, v′) ∈ E, t ∈ K, (14e)
yv,v′,t ≥ xv′,t − xv,t, ∀(v, v′) ∈ E, t ∈ K, (14f)

which is an LP [50], i.e., an LP relaxation of (13).
For each node v and each terminal t, the solution x̄v,t to the

LP relaxation can be viewed as the probability of assigning
v to (the connected component containing) t after the cut.
A rounding scheme is used to convert this fractional value to
either 0 or 1, subject to the constraint (14b). Different rounding
schemes lead to different approximation factors. Specifically,
the randomized rounding scheme achieves an approximation
factor of 1.5 [50], and the best-known rounding scheme can
achieve an approximation factor of 1.2965 [53]. Finally, given
the rounded value of xv,t (∀v ∈ V, t ∈ K), the cut is the
set of all the links whose endpoints are assigned to different
terminals, i.e., Lm = {(v, v′) ∈ E : ∃t, t′ ∈ K with t 6=
t′, satisfying xv,t = xv′,t′ = 1}.

The complexity of this method is dominated by solv-
ing the LP (14), which has O(|K|(|V | + |E|)) variables
and O(|K|(|V | + |E|)) constraints, and can be solved in
Polynomial(|K|(|V | + |E|)) time, where the exact order of
polynomial depends on the LP algorithm used. For example,
the complexity will be O(|K|4.5(|V | + |E|)4.5) if using
Vaidya’s algorithm [54]1.

By similar argument as Corollary III.7, we can bound the
overall performance of the attack as follows.

Corollary III.8. Using CKR relaxation with an α-
approximation rounding scheme to select the compromised
links and the LP (6) to compute the manipulations achieves a
total performance degradation of

(τ − τmax)TCKR + τmax

∑
pi∈P

|pi| −
∑
pi∈P

rix ≥

(τ − τmax)αT opt + τmax

∑
pi∈P

|pi| −
∑
pi∈P

rix, (15)

where TCKR is the total traversal number of the links selected
by CKR relaxation, and T opt is the minimum total traversal
number of all the multiway cuts between the terminals.

TABLE I summarizes the performance guarantee of the
aforementioned algorithms in solving ALS.

3) Illustrative example: Consider the example in Fig. 2 (a).
ALS Greedy selects the link with smallest cost-value ratio in
each iteration (breaking ties arbitrarily), and ends up selecting
Lm = {l1, l3, l4}, as shown in Fig. 5. CKR relaxation first

1This algorithm has a worst-case complexity of O((n+m)1.5nB) for an
LP with n variables, m constraints, and B input bits.

2The constant α depends on the rounding scheme, e.g., 1.5 for randomized
rounding and 1.2965 for the rounding scheme in [53].

3/3

4/4

3/3

3/3
3/3

Lm = {}

Pm = {}

3/0

4/3

3/2

3/2
3/2

Lm = {l1}

Pm = {p1, p2, p3}

3/0

4/0

3/0

3/1
3/1

Lm = {l1, l3}

Pm = {p1, p2, p3, p4, p5}

3/0

4/0

3/0

3/0
3/0

Lm = {l1, l3, l4}

Pm = {p1, p2, p3, p4, p5, p6}

1st iteration 2nd iteration 3rd iteration

Fig. 5. The illustrative example for ALS Greedy. The network
topology is as in Fig. 2 (a), and each link is labeled with its cost-value
ratio |Pl|

|Pl\Pm| (randomly breaking ties in 1st and 3rd iterations).

(0,1,0,0)

(0,0,0,1)

(0.25,0.25,0.25,0.25)

(0.25,0.25,0.25,0.25)

(1,0,0,0)

(0,0,1,0)

t=1, v=1

v=2

t=2, v=3 (0,1,0,0)

(0,0,0,1)

(1,0,0,0)

(1,0,0,0)

(1,0,0,0)

(0,0,1,0)

(0,1,0,0)

(0,0,0,1)

(1,0,0,0)

(1,0,0,0)

(1,0,0,0)

(0,0,1,0)

v=4

t=3, v=5

t=4, v=6

(a) (b) (c)
Fig. 6. The illustrative example for CKR relaxation: (a) input topology
with node/terminal labels (links labeled as in Fig. 2 (a)); (b) fractional
solution to (14) ((xv,t)

4
t=1 for each node v); (c) rounded solution

(highlighted links are in the cut between the terminals).

obtains a fractional assignment from each node to the terminals
as in Fig. 6 (b), and then rounds it to an integer assignment
in Fig. 6 (c) by the scheme in [50]. The output Lm is the set
of links in the cut, Lm = {l2, l4, l5} in this case.

IV. PERFORMANCE EVALUATION

We conduct simulations to evaluate the capabilities of an
intelligent attacker employing our strategies in comparison
with benchmarks, based on real ISP topologies. To be concrete,
we consider delay-based DGoS attacks, where the attacker
tries to inject the maximum amount of delay onto a set of
targeted paths, while the user of these paths tries to localize
links with abnormally large delays by network tomography.

A. Experiment Setup
1) Network topology: We use real network topologies from

public datasets, whose parameters are shown in the TABLE II.
The first four topologies are Point of Presence (PoP)-level
topologies from the Internet Topology Zoo [55], and the last
two topologies are router-level topologies from the CAIDA
project [56]. We classify the topologies into small, medium,
and large networks. For each topology, we select a given
number of terminals uniformly at random from low-degree
nodes (degree ≤ 2), and repeat this selection for 20 times.

2) Parameter setting: For each topology and each set of
selected terminals, we compute the paths in P in two ways:

i) All possible paths: In this case, P contains all the cycle-
free paths between the terminals. Note that cutting all
the cycle-free paths is equivalent to cutting all the paths
between the terminals. Since the number of all the cycle-
free paths can grow exponentially with the network size,
we only evaluate this case on the small networks.

ii) Shortest paths: In this case, P only contains one shortest
path (in hop count) for each pair of terminals, with ties
broken arbitrarily. Since there are only

(|K|
2

)
paths for

|K| terminals, we evaluate this case on the medium–large
networks.

9

TABLE II
PARAMETERS OF ISP TOPOLOGIES

Network size #nodes #links #candidate terminals4

Bics small 33 48 16
BTN small 53 65 25
Colt medium 153 191 45
Cogent medium 197 245 21
AS 20965 large 968 8283 75
AS 8717 large 1778 3755 1075

We assume that before the attack, each link has a delay
randomly drawn from [0, 15] ms, and a link is considered
“normal” if its delay is within 15 ms, i.e., τ = 15. These
parameters are consistent with single-hop delays in real ISP
networks [57]. The maximum delay at a link is set to 200 ms,
i.e., τmax = 200, which is within the range of typical buffering
capacities at router interfaces3.

3) Benchmarks: We compare the two proposed algorithms,
Algorithm 1 (‘ALS greedy’) and CKR relaxation with random-
ized rounding (‘CKR’), with the following three heuristics for
selecting the set of compromised links:

i) “Random selection” (‘random’): To illustrate the capabil-
ity of an attacker who cannot actively select which links
to compromise, this algorithm selects k links uniformly
at random, where k is set to the number of compromised
links selected by ‘CKR’ to facilitate comparison.

ii) “Top traversal” (‘top traversal’): Based on the intuition
that compromising the most traversed links will provide
control over more paths, this algorithm selects the k links
with the largest traversal numbers. Again, to facilitate
comparison, k is set to the number of compromised links
selected by ‘CKR’.

iii) “Compromise all” (‘all’): Compromising all the links is
also a very intuitive approach to maximize the damage
the attacker can cause to the network.

Under each selection of compromised links, we solve the LP
(6) to compute the total performance degradation (measured
by the total amount of delay injected by the attacker over all
the paths) under the optimal manipulations.

B. Results
Overall, we observe that the proposed algorithms (‘ALS

greedy’ and ‘CKR’) perform similarly to each other and signif-
icantly better than the heuristic algorithms. More importantly,
these algorithms show that it is possible to introduce signif-
icant delay on communication paths without being localized
by network tomography, signaling the need of new defenses.

1) Case of all possible paths: In the case that P contains all
the possible paths between the terminals, the results are shown
in Fig. 7 (top 2). The y-axis is the performance of the attacker
measured by the average injected delay per path (plus/minus
one standard deviation), computed over 20 sets of randomly
selected terminals, and the x-axis is the number of terminals.
In this experiment, ‘CKR’ performs the best as expected, as it

3For example, Cisco Supervisor Engine 7-E with a Gigabit port and 32MB
memory can buffer traffic for 320 ms [58], and Juniper line cards can buffer
traffic for 100–250 ms [59].

4For Bics, these are all the nodes with degree ≤ 2; for the other networks,
these are all the nodes with degree one.

4 5 6 7 8
terminals

0

1

2

3

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 Bics

4 5 6 7 8
terminals

0

1

2

3

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 BTN

10 11 12 13 14 15
terminals

0.0

0.5

1.0

1.5

2.0

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 Cogent

10 11 12 13 14 15
terminals

0.0

0.5

1.0

1.5

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 Colt

20 21 22 23 24 25
terminals

0

1

2

3

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e2 AS 20965

20 21 22 23 24 25
terminals

0

2

4

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e2 AS 8717

ALS greedy CKR top traversal random all

Fig. 7. Average delay degradation for the case of all possible paths
(top 2) and the case of shortest paths (bottom 4).

has the best approximation guarantee. Both ‘CKR’ and ‘ALS
greedy’ perform much better than the heuristic algorithms,
demonstrating the importance of carefully selecting the
compromised links in modeling the capabilities of intelligent
attackers. Among the heuristic algorithms, ‘top traversal’
performs the best, as it leads to more compromised paths than
‘random’. However, it is not sufficient to just compromise
more paths. To prevent the compromised links from being
detected as bad links by network tomography, the attacker
needs to ensure constraint (2e). Therefore, compromising too
many links can reduce the attacker’s capability in injecting
delays. This is why ‘all’ performs the worst.

2) Case of shortest paths: Similar results are shown in
Fig. 7 (bottom 4) for the case where P only contains the
shortest paths between the terminals. We see that ‘ALS greedy’
and ‘CKR’ still significantly outperform the other algorithms.
However, ‘CKR’ is not always the best any more, because
it is not designed for this case. In particular, ‘CKR’ will
select links to cut all the possible paths between the terminals,
while the ALS problem in this case only needs to cut the
shortest paths. Because of that, ‘CKR’ may compromise more
links than necessary, which reduces the attacker’s capability
to manipulate the path delays.

In both cases, the best attack algorithm is able to inject
significant delays (0.3–3 seconds/path) without exposing the
compromised links to network tomography. Detailed exami-
nation of the measurement paths shows that the vulnerability
of a network to DGoS attacks is negatively correlated with
its identifiability, measured by rank(R)/|L|: the average delay
degradation per path decreases from 3 seconds to 0.3 second as
rank(R)/|L| increases from 0.1 to 0.9. This observation sug-
gests that existing techniques for improving the identifiability
via placing monitors and constructing measurement paths [35],

10

[36], [37], [38] also help to reduce the vulnerability to DGoS
attacks. Note that achieving identifiability does not eliminate
this vulnerability, e.g., the paths in Fig. 2 (a) can identify all
the links, but DGoS attack can still be launched as in Fig. 2 (c).

V. CONSTRAINED ATTACKS

So far we have assumed that the attacker can compromise
any subset of links. In practice, however, there are usually
constraints on which and/or how many links the attacker is
capable of compromising. To shed light on the impact of such
constraints, we will analyze the optimal attack strategy under
the constraint that for a given k > 0,∑

lj∈Lm

cj ≤ k, (16)

where cj (cj ≥ 0) is the cost of compromising link lj , and k is
the total budget of the attacker for compromising links. We use
the costs to model the difficulty of controlling the links, e.g.,
by gaining backdoor access to the associated devices [10], [60]
or manipulating the paths (e.g., through BGP hijacking [61])
to position attacker-controlled devices on the links. We assume
that these costs can be evaluated by the attacker.

A. Mixed Integer Linear Programming (MILP) Formulation

First of all, we note that the budgeted attack optimization in-
cludes the unbudgeted optimization (2) as a special case, which
boils down to the ALS problem that is NP-hard as shown in
Theorems III.1 and III.4. Thus, the budgeted optimization is
also NP-hard. Nevertheless, we will show that this problem
can be formulated as an MILP, which allows us to evaluate
the maximum damage achievable by a budgeted attacker for
small problem instances using MILP solvers.

Specifically, define binary variables

αj :=

{
1 if lj ∈ Lm,
0 otherwise, (17)

βi :=

{
1 if pi ∈ Pm,
0 otherwise. (18)

Then (2) under the additional constraint (16) can be written as:

max
x̂,α,β

∑
pi∈P

ri(x̂− x) (19a)

s.t. rix̂ ≤ rix + βiτmaxri1, ∀pi ∈ P, (19b)
rix̂ ≥ rix, ∀pi ∈ P, (19c)
βi ≤ riα, ∀pi ∈ P, (19d)
x̂j ≤ αjτ + (1− αj)τmax, ∀lj ∈ L, (19e)
x̂j ≥ 0, ∀lj ∈ L, (19f)∑
lj∈L

αjcj ≤ k, (19g)

αj , βi ∈ {0, 1}, ∀lj ∈ L, pi ∈ P. (19h)

Lemma V.1. The MILP (19) is equivalent to (2) under the
additional constraint (16).

Proof. First, we argue that constraints (19b)–(19d) are equiv-
alent to constraints (2b)–(2c). This is because if a path pi
contains no compromised link (i.e., riα = 0), then βi must
be zero and thus (19b)–(19c) imply (2b), whereas if pi contains
at least one compromised link, then βi will be one under
the optimal solution, and thus (19b) imposes no constraint
on x̂ (as τmaxri1 is an upper bound on the path metric for
pi). Moreover, it is easy to see that constraints (19e)–(19f)
are equivalent to (2d)–(2e), and constraint (19g) is equivalent
to (16). Finally, as uncompromised paths do not incur any
degradation, the objective (19a) is equivalent to (2a).

B. Asymptotic Property of the Optimal Lm

To solve the attack optimization efficiently for large prob-
lem instances, we seek to characterize the optimal set of
compromised links more explicitly. Generally, adding the
budget constraint (16) to (2) will invalidate Theorem III.1.
To derive its counterpart under the budget constraint, we have
the following result.

Lemma V.2. If τmax � rix (∀pi ∈ P) and τmax � τ , then
the optimal value of (2) for a given set Lm of compromised
links is asymptotically proportional to

Tm :=
∑

lj∈L′n

∑
pi∈P

rij , (20)

where L′n := Ln \
⋃

p∈Pn
p is the set of uncompromised links

that are only traversed by compromised paths.

Proof. We rewrite the objective function (2a) as∑
pi∈Pm

∑
lj∈L

rij(x̂j − xj) =
∑
lj∈L

∑
pi∈Pm

rij(x̂j − xj). (21)

If lj ∈ Lm, then x̂j ≤ τ by (2e). If lj ∈ Ln, then x̂j ≤
min(τmax,mini: pi∈Pn,rij=1 rix) by (2b,2d). For a large τmax,
x̂j can achieve τmax if and only if lj ∈ L′n. Thus, when τmax

is large, the optimal value of (21) wrt x̂ is approximately:

τmax

∑
lj∈L′n

∑
pi∈Pm

rij = τmax

∑
lj∈L′n

∑
pi∈P

rij (22)

∝ Tm,

where (22) is because the traversal number of compromised
paths is equal to the traversal number of measurement paths
for lj ∈ L′n, i.e.,

∑
pi∈Pm

rij =
∑

pi∈P rij for lj ∈ L′n.

Lemma V.2 immediately yields the following asymptotically
equivalent formulation of the budget-constrained DGoS.

Theorem V.3. If τmax � rix (∀pi ∈ P) and τmax � τ , then
the optimal set L∗m of compromised links that solves (2) under
the additional constraint (16) is the solution to

max Tm (23a)

s.t. Lm ⊆ L,
∑

lj∈Lm

cj ≤ k, (23b)

which we refer to as the constrained adversarial link selection
(CALS) problem.

Proof. By Lemma V.2, the objective in (2a) is asymptotically
equivalent to the objective in (23a) as τmax →∞.

11

In words, CALS is a novel combinatorial optimization
problem that aims at selecting compromised links subject to a
budget constraint to maximize the total traversal number of the
uncompromised links that only reside on compromised paths.
Similar to ALS, we will show that CALS is also NP-hard.

Corollary V.4. The CALS problem (23) is NP-hard.

Proof. The idea is to show that CALS is actually a general-
ization of ALS, and hence its NP-hardness is implied by the
NP-hardness of ALS as proved in Theorem III.4.

To this end, consider a special case of CALS, where it
is known that it suffices to optimize Lm among the cuts
of P . If Lm is a cut, then L′n = Ln, and hence Tm =∑

lj∈L′n

∑
pi∈P rij =

∑
lj∈Ln

∑
pi∈P rij , which is the total

traversal number of all the uncompromised links. As∑
lj∈Ln

∑
pi∈P

rij +
∑

lj∈Lm

∑
pi∈P

rij =
∑
pi∈P

∑
lj∈L

rij , (24)

which is a constant (the total hop count of all the paths in P),
maximizing

∑
lj∈Ln

∑
pi∈P rij is equivalent to minimizing∑

lj∈Lm

∑
pi∈P rij (i.e., minimizing the total traversal num-

ber of the compromised links), which is the ALS problem.

Compared to the MILP formulation (19), although CALS
remains NP-hard, it facilitates the development of an efficient
suboptimal algorithm as shown below. Moreover, Lemma V.2
implies that Tm can be used as a proxy for analyzing the per-
formance of any strategy for selecting the compromised links.

C. Simple Greedy Algorithm

In the unconstrained case, we have seen in Section IV that
the simple greedy algorithm (Algorithm 1) achieves superior
performance wrt benchmarks. It is thus natural to consider
its extension in the constrained case. The resulting algorithm,
called CALS Greedy, selects the link that yields the maximum
increase in Tm per unit cost in each iteration. Specifically, it
follows the same steps as Algorithm 1, except that:

• line 3 is replaced by “while Pm 6= P and ∃l ∈ L \ Lm

such that Lm ∪ {l} satisfies the budget constraint (16)”;
• line 4 is replaced by “find the link lj with the largest

ratio Tm(Lm∪{lj})−Tm(Lm)
cj

s.t. Lm ∪ {lj} satisfies (16)”,

where Tm(L′) denotes the value of Tm as defined in (20) when
Lm = L′. There are again O(|L|) iterations, and each iteration
is dominated by the new line 4 above that takes O(|L|2|P |)
time, as we need to evaluate Tm(Lm ∪ {lj}) for all the
O(|L|) candidate links and each evaluation takes O(|L| · |P |)
time. The complexity of CALS Greedy is thus O(|L|3|P |).

Counterexample: As shown later, CALS Greedy performs
very well empirically, which raises a question of whether it
always closely approximates the optimal solution. To this end,
we will show by a counterexample that its approximation
factor is at most inversely proportional to the number of paths,
i.e., O(1/|P |). Specifically, consider the network topology and
the set of paths P as shown in Fig. 8, where k = 2 and cj = 1
(∀lj ∈ L). CALS Greedy will achieve TG

m = 2 by select-
ing Lm = {(C,E), (K,G)}. However, the optimal solution

Fig. 8. Example showing the O(1
|P |)-approximation of CALS Greedy.

achieves T ∗m = 6n + 2 by selecting Lm = {(A,E), (G, I)}.
For this instance of CALS, we see that

TG
m

T ∗m
=

1

3n+ 1
=

1
3
2 |P | − 5

= Θ

(
1

|P |

)
. (25)

Therefore, the approximation factor of CALS Greedy (defined
by the worst-case instance) is O(1/|P |). This counterexample
shows that the greedy heuristic does not provide a good
approximation for CALS in the worst case. Nevertheless, it
achieves near-optimal performance for the attacker in average
cases as shown in Section V-D. It remains open whether there
exists a polynomial-time approximation algorithm for CALS.

Remark: Theoretically, we can also apply the greedy heuris-
tic directly to the original objective (2a). Let F (Lm) denote
the optimal objective value of the LP wrt x̂ under a given
Lm, computed as in Section III-A. Then this LP based
greedy heuristic will select the link lj with the maximum
F (Lm∪{lj})−F (Lm)

cj
in each iteration subject to the budget con-

straint. This approach, however, will incur a much higher com-
plexity than CALS Greedy due to the need of solving O(|L|2)
LP’s. For example, its complexity will be O(|L|4(|P |+|L|)2.5)
if using Vaidya’s algorithm [54] to solve the LP for F (Lm)
(with O(|L|) variables and O(|P |+ |L|) constraints).

D. Evaluation

Setup: We evaluate the optimal solution obtained by solving
(19) (‘MILP’) and the proposed algorithm, CALS Greedy
(‘CALS greedy’), for the budget-constrained DGoS under the
setup in Section IV-A, except that we fix the number of
terminals and only consider the case of shortest paths. Table III
shows the parameter values. As mentioned before, we use costs
to model the difficulty for the attacker to control the links,
which depends on the specific method of controlling the links
and the related parameters, e.g., the models and the vendors of
the associated devices for backdoor-based control, or locations
of the attacker’s devices for hijacking-based control. In our
evaluation, the cost of compromising each link is drawn
uniformly at random from the interval of [0, 2). This leads
to a unit cost per link on the average, giving the budget k
an intuitive meaning of the average number of compromised
links under random selection. The results are averaged (± one
standard deviation) over 20 sets of randomly selected terminals
and randomly generated link costs.

Benchmarks: As our problem is a MILP, we use the follow-
ing heuristics commonly used to solve MILPs as benchmarks:

1) “LP relaxation with Randomized Rounding” (‘LP-RR’):
This heuristic first solves the LP relaxation of (19), and
then treats the fractional solution (αj)lj∈L as probabili-
ties for selecting links, subject to the budget constraint.

12

TABLE III
PARAMETERS FOR EVALUATING BUDGET-CONSTRAINED ATTACKS

Network #terminals budget k cost
Bics 8 1, 3, 5, 7, 9,∞ [0,2)
BTN 8 1, 3, 5, 7, 9,∞ [0,2)
Cogent 8 1, 3, 5, 7, 9,∞ [0,2)
Colt 10 1, 3, 5, 7, 9,∞ [0,2)
AS 8717 10 1, 3, 5, 7, 9,∞ [0,2)
AS 20965 12 1, 3, 5, 7, 9,∞ [0,2)

1 3 5 7 9 inf
attack budget

0

2

4

6

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e2 Bics

1 3 5 7 9 inf
attack budget

0

2

4

6
av

g
de

gr
ad

at
io

n/
pa

th
 (m

s) 1e2 BTN

1 3 5 7 9 inf
attack budget

0

1

2

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 Cogent

1 3 5 7 9 inf
attack budget

0.0

0.5

1.0

1.5

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e3 Colt

1 3 5 7 9 inf
attack budget

0

2

4

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e2 AS 20965

1 3 5 7 9 inf
attack budget

0

2

4

6

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e2 AS 8717

MILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal randomMILP ALS greedy CALS greedy LP based greedy LP-RR top traversal random

Fig. 9. Average delay degradation under the budget constraint.

2) “LP based greedy”: This heuristic directly maximizes (2a)
by selecting one more compromised link per iteration that
yields the maximum additional delay degradation per unit
cost, subject to the budget constraint.

We also adapt algorithms from the unconstrained case as
benchmarks. Algorithm 1 (‘ALS greedy’) can be easily
adapted to satisfy the budget constraint (16) by stopping after
exhausting the budget. Similarly, the heuristics ‘random’ and
‘top traversal’ (see Section IV-A3) can also be easily adapted
to satisfy the budget constraint (16).

Results: Fig. 9 shows the comparison of different attack
strategies, where k =∞ is the unconstrained case. First of all,
the result shows that it is necessary to change the objective
from minimizing the total traversal number to maximizing Tm
(20) when we (the attacker) are not able to compromise a cut
due to the budget constraint. This is indicated by the poor
performance of ‘ALS greedy’ when k is small. Secondly, the
proposed algorithm, ‘CALS greedy’, achieves as much damage
as ‘ALS greedy’ under an unlimited budget, but much more
damage under a limited budget. Across all budget values,
‘CALS greedy’ achieves near-optimal performance (i.e., close
to ‘MILP’). Finally, ‘CALS greedy’ outperforms the other
heuristics derived from our optimization formulation (i.e.,
‘LP-RR’, ‘LP based greedy’). In particular, while ‘LP based
greedy’ achieves comparable performance degradation, it is
much slower, e.g., the experiment on AS 20965 takes 17
seconds for ‘CALS greedy’ but 4844 seconds for ‘LP based
greedy’, indicating the value of using Tm (20) as a proxy
objective function. Overall, we see that even though ‘CALS

1 3 5 7 9 inf
attack budget

0.0
0.2
0.4
0.6
0.8
1.0

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 Bics

1 3 5 7 9 inf
attack budget

0.0

0.2

0.4

0.6

0.8

1.0

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 BTN

1 3 5 7 9 inf
attack budget

0

1

2

3

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 Cogent

1 3 5 7 9 inf
attack budget

0

1

2

3

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 Colt

1 3 5 7 9 inf
attack budget

0.0

0.5

1.0

1.5

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 AS 20965

1 3 5 7 9 inf
attack budget

0.0

0.5

1.0

1.5

av
g

de
gr

ad
at

io
n/

pa
th

 (m
s) 1e4 AS 8717

MILP MILP overestimated CALS greedy CALS greedy overestimated

Fig. 10. Average delay degradation when the attacker overestimates
the measurement paths (|P̃ |/|P | = 50%).

greedy’ does not guarantee a good approximation in the worst
case (see the counterexample in Section V-C), it performs well
in average cases.

Moreover, we evaluate the impact of imperfect knowledge
of measurement paths, by setting the attacker-assumed mea-
surement paths P to the set of all the shortest paths between
the terminals and the actual measurement paths P̃ used by
network tomography to a random subset of these paths. We
then repeat the experiment in Fig. 9, except that we only count
the performance degradation on the paths in P̃ (assuming that
only these paths are used). Fig. 10 shows the average degrada-
tions achieved by the optimal attack strategy (‘MILP’) and the
best polynomial-time strategy (‘CALS greedy’) with accurate
knowledge of the measurement paths, together with those
without accurate knowledge (‘overestimated’). The results
show that although the attacker incurs some suboptimality
due to not knowing the exact set of communication paths, he
can still launch the attack on all possible paths and achieve
significant damage on the actually used paths. Here we have
assumed that network tomography can only monitor the paths
used for communications; our recent work [62] considers a
more general scenario where network tomography can monitor
additional paths via active probing, in which case only the per-
formance degradation on data communication paths matters.

Finally, as our attack model does not rule out the pos-
sibility for a specific inference algorithm to detect some
of the compromised links as bad links, we evaluate the
detectability of compromised links under our best polynomial-
time attack strategy, CALS Greedy. To this end, we imple-
ment a tomography-based detector that tries to explain all
the measurements with the minimum number of bad links
as in [18]. Let Ld denote the set of detected bad links.
Fig. 11 shows the fraction of detected compromised links
|Ld ∩ Lm|/|Lm| (‘detection rate’), the fraction of detected
uncompromised links |Ld ∩ Ln|/|Ln| (‘false alarm rate’), the

13

1 3 5 7 9 inf
attack budget

0.0

2.5

5.0

7.5
ra

te
1e−1 Bics

1 3 5 7 9 inf
attack budget

0.0

2.5

5.0

7.5

ra
te

1e−1 BTN

1 3 5 7 9 inf
attack budget

0.0

0.5

1.0

ra
te

Cogent

1 3 5 7 9 inf
attack budget

0.0

2.5

5.0

7.5

ra
te

1e−1 Colt

1 3 5 7 9 inf
attack budget

0

2

4

6

ra
te

1e−1 AS 20965

1 3 5 7 9 inf
attack budget

0.0

2.5

5.0

7.5

ra
te

1e−1 AS 8717

detection rate false alarm rate compromised detected

Fig. 11. Performance of tomography-based bad link detection.

fraction of compromised links |Lm|/|L| (‘compromised’), and
the fraction of detected links |Ld|/|L| (‘detected’). We see that
although the detector detects some compromised links as bad
links, it detects even more innocent links as bad links, and is
thus unable to localize the compromised links. Specifically,
the false alarm rate is comparable to or even higher than
the detection rate in most attack scenarios, meaning that an
uncompromised link is more likely to be flagged as a bad link
than a compromised link. This is because the detector flags a
much larger number of bad links than the actual number of
links introducing significant delays (i.e., compromised links).
For example, in Cogent, the detector claims that 70–80%
links are bad while most of the delays are injected by 10%
of the links. This indicates the difficulty of localizing the
compromised links using existing tomography techniques.

VI. CONCLUSION

This work helps to establish the fundamental limit of net-
work tomography in adversarial environments by formulating
and analyzing a novel type of attack, called the stealthy
DeGrading of Service (DGoS) attack, that aims at maximally
degrading the performance of targeted paths without being
localized by network tomography. Through careful analysis,
we derive explicit properties of the optimal attack strategy. The
derived properties allow us to link our problem to well-known
combinatorial optimization problems, and leverage existing
algorithms with approximation guarantees. Our evaluations on
real topologies show that the proposed attack can significantly
degrade communication performances without being localized
by network tomography, signaling the need of new defenses. In
particular, our evaluations show a notable performance gap be-
tween heuristic attack strategies (e.g., compromising the most
traversed links) and the proposed strategies, demonstrating the
importance of modeling intelligent attackers.

Discussion: Our results suggest several potential approaches
to the defense. First, our proposed algorithms can be used to
identify the set of links that once controlled by an adversary,

will cause the maximum damage, which helps to select links
for protection (e.g., by installing monitoring agents or updating
software/hardware at the endpoints). Moreover, the results in
Fig. 10 suggest that dynamically adapting the measurement
paths among a larger set of paths can help network tomography
to mitigate DGoS attacks by making it harder for the attacker
to learn which paths are monitored. Lastly, our observations
that networks with higher identifiability are less vulnerable
to DGoS attacks suggest that existing measurement design
algorithms can also help to defend against such attacks. We
leave detailed investigation of these defenses to future work.

REFERENCES

[1] C. Chiu and T. He, “Stealthy DGoS attack: Degrading of service under
the watch of network tomography,” in IEEE INFOCOM, July 2020.

[2] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “Netdiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data,” in ACM CoNEXT, 2007.

[3] S. Zarifzadeh, M. Gowdagere, and C. Dovrolis, “Range tomgoraphy:
Combining the practicality of boolean tomography with the resolution
of analog tomography,” in ACM IMC, 2012.

[4] D. Ghita, K. Argyraki, and P. Thiran, “Toward accurate and practical
network tomography,” ACM SIGOPS Operating Systems Review, vol. 47,
no. 1, pp. 22–26, January 2013.

[5] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan, “Non-
adapative fault diagnosis for all-optical networks via combinatorial
group testing on graphs,” in IEEE INFOCOM, 2007.

[6] S. Ahuja, S. Ramasubramanian, and M. Krunz, “SRLG failure local-
ization in optical networks,” IEEE/ACM Transations on Networking,
vol. 19, no. 4, pp. 989–999, Auguest 2011.

[7] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network
tomography: Recent developments,” Statistical Science, 2004.

[8] Y. Zhao, Y. Chen, and D. Bindel, “Towards unbiased end-to-end network
diagnosis,” in ACM SIGCOMM, 2006.

[9] C. A. Shue, A. J. Kalafut, and M. Gupta, “Abnormally macilious
autonomous systems and their Internet connectivity,” IEEE/ACM Trans-
actions on Networking, vol. 20, no. 1, pp. 220–230, February 2012.

[10] L. Constantin, “Attackers slip rogue, backdoored firmware onto Cisco
routers,” PC World - Security, 2015.

[11] Z. Zhang, O. Mara, and K. Argyraki, “Network neutrality inference,” in
ACM SIGCOMM, 2014.

[12] S. Zhao, Z. Lu, and C. Wang, “When seeing isn’t believing: On
feasibility and detectability of scapegoating in network tomography,”
in IEEE ICDCS, 2017.

[13] Y. Vardi, “Estimating source-destination traffic intensities from link
data,” Journal of the American Statistical Assoc., pp. 365–377, 1996.

[14] M. Coates, A. O. Hero, R. Nowak, and B. Yu, “Internet tomography,”
IEEE Signal Processing Magzine, vol. 19, pp. 47–65, 2002.

[15] M. F. Shih and A. O. Hero, “Unicast inference of network link delay
distributions from edge measurements,” in IEEE ICASSP, 2001.

[16] V. N. Padmanabhan, L. Qiu, and H. Wang, “Server-based inference of
internet link lossiness,” in IEEE INFOCOM, April 2003.

[17] N. Duffield, “Simple network performance tomography,” in ACM SIG-
COMM conference on Internet measurement, 2003.

[18] ——, “Network tomography of binary network performance character-
istics,” IEEE Transactions on Information Theory, vol. 52, no. 12, pp.
5373–5388, December 2006.

[19] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicase-based
inference of network internal loss characteristics,” IEEE Transactions
on Information Theory, vol. 45, no. 7, pp. 2462–2480, November 1999.

[20] A. Adams, T. Bu, T. Friedman, J. Horowitz, D. Towsley, R. Caceres,
N. Duffield, F. Presti, and V. Paxson, “The use of end-to-end multi-
cast measurements for characterizing internal network behavior,” IEEE
Communications Magazine, vol. 38, no. 5, pp. 152–159, May 2000.

[21] N. Duffield and F. Lo Presti, “Multicast inference of packet delay
variance at interior network links,” in IEEE INFOCOM, 2000.

[22] F. Lo Presti, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-
based inference of network-internal delay distributions,” IEEE/ACM
Transactions on Networking, vol. 10, no. 6, pp. 761–775, Dec. 2002.

[23] Y. Xia and D. Tse, “Inference of link delay in communication networks,”
IEEE Journal on Selected Areas in Communications, vol. 24, no. 12, pp.
2235–2248, December 2006.

[24] N. Duffield, F. LoPresti, V. Paxson, and D. Towsley, “Network loss
tomography using striped unicast probes,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 697–710, August 2006.

14

[25] B. Xi, G. Michailidis, and V. Nair, “Estimating network loss rates using
active tomography,” Journal of the American Statistical Association, vol.
101, no. 476, pp. 1430–1448, December 2006.

[26] E. Lawrence, G. Michailidis, and V. N. Nair, “Network delay tomogra-
phy using flexicast experiments,” Journal of the Royal Statistical Society,
Series B (Statistical Methodology), vol. 68, no. 5, pp. 785–813, 2006.

[27] M. Coates and R. Nowak, “Network tomography for internal delay
estimation,” in IEEE ICASSP, May 2001.

[28] M. F. Shih and A. O. Hero, “Unicast-based inference of network link de-
lay distributions using mixed finite mixture models,” IEEE Transactions
on Signal Processing, Special Issue on Signal Processing in Networking,
vol. 51, no. 9, pp. 2219–2228, August 2003.

[29] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-path
delay measurements,” in IEEE INFOCOM, 2001.

[30] Y. Chen, D. Bindel, and R. H. Katz, “An algebraic approach to practical
and scalable overlay network monitoring,” in ACM SIGCOMM, 2004.

[31] A. Chen, J. Cao, and T. Bu, “Network tomography: Identifiability and
Fourier domain estimation,” in IEEE INFOCOM, 2007.

[32] H. Nguyen and P. Thiran, “The Boolean solution to the congested IP
link location problem: Theory and practice,” in IEEE INFOCOM, 2007.

[33] Q. Zheng and G. Cao, “Minimizing probing cost and achieving identifi-
ability in probe-based network link monitoring,” IEEE Transactions on
Computers, vol. 62, no. 3, pp. 510–523, March 2013.

[34] S. Tati, S. Silvestri, T. He, and T. LaPorta, “Robust network tomography
in the presence of failures,” in IEEE ICDCS, 2014.

[35] A. Gopalan and S. Ramasubramanian, “On identifying additive link
metrics using linearly independent cycles and paths,” IEEE/ACM Trans-
actions on Networking, vol. 20, no. 3, 2012.

[36] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Identifiability
of link metrics based on end-to-end path measurements,” in ACM IMC,
2013.

[37] ——, “Inferring link metrics from end-to-end path measurements:
Identifiability and monitor placement,” IEEE/ACM Transactions on
Networking, vol. 22, no. 4, pp. 1351–1368, June 2014.

[38] L. Ma, T. He, K. K. Leung, D. Towsley, and A. Swami, “Efficient
identification of additive link metrics via network tomography,” in IEEE
ICDCS, 2013.

[39] S. Ahuja, S. Ramasubramanian, and M. Krunz, “SRLG failure localiza-
tion in all-optical networks using monitoring cycles and paths,” in IEEE
INFOCOM, 2008.

[40] S. Cho and S. Ramasubramanian, “Localizing link failures in all-optical
networks using monitoring tours,” Elsevier Computer Networks, vol. 58,
pp. 2–12, January 2014.

[41] L. Ma, T. He, A. Swami, D. Towsley, K. Leung, and J. Lowe, “Node
failure localization via network tomography,” in ACM IMC, 2014.

[42] L. Ma, T. He, A. Swami, D. Towsley, and K. Leung, “On optimal
monitor placement for localizing node failures via network tomography,”
Elsevier Performance Evaluation, vol. 91, pp. 16–37, September 2015.

[43] ——, “Network capability in localizing node failures via end-to-end
path measurements,” IEEE/ACM Transactions on Networking, vol. 25,
no. 1, pp. 434–450, February 2017.

[44] Y. Chen, D. Bindel, H. Song, and R. Katz, “Algebra-based scalable
overlay network monitoring: Algorithms, evaluation, and applications,”
IEEE/ACM Transactions on Networking, vol. 15, pp. 1084–1097, Octo-
ber 2007.

[45] Q. Liang and E. Modiano, “Optimal network control with adversarial
uncontrollable nodes,” in ACM Mobihoc, 2019.

[46] “Threshold based alerting on NetFlow.” [Online]. Available: https:
//www.manageengine.com/products/netflow/threshold-based-alerts.html

[47] “ManageEngine OpManager.” [Online]. Available: https://www.
manageengine.com/network-monitoring/?nfa

[48] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

[49] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yan-
nakakis, “The complexity of multiterminal cuts,” SIAM Journal on
Computing(SICOMP), vol. 23, 1994.

[50] V. V. Vazirani, Approximation Algorithm. Springer, 2001.
[51] G. Călinescu, H. Karloff, and Y. Rabani, “An improved approximation

algorithm for multiway cut,” Computer and System Sciences, vol. 60,
pp. 564–574, June 2000.

[52] R. Manokaran, J. S. Naor, P. Raghavendra, and R. Schwartz, “Sdp gaps
and ugc hardness for multiway cut, 0-extension and metric labeling,” in
ACM STOC, 2008.

[53] A. Sharma and J. Vondrák, “Multiway cut, pairwise realizable distribu-
tions, and descending thresholds,” in ACM STOC, 2014.

[54] P. M. Vaidya, “Speeding-up linear programming using fast matrix
multiplication,” in IEEE FOCS, 1989.

[55] “The Internet Topology Zoo,” http://www.topology-zoo.org/dataset.html.

[56] “Center for Applied Internet Data Analysis: Macroscopic
Internet Topology Data Kit (ITDK),” http://www.caida.org/data/
internet-topology-data-kit/.

[57] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Dio, “Mea-
surement and analysis of single-hop delay on an IP backbone network,”
IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, pp.
908–921, August 2003.

[58] “cat4510 buffer size.” [Online]. Available: https://community.cisco.com/
t5/switching/cat4510-buffer-size/td-p/2872535

[59] “Buffer size ex9200 line card.” [Online].
Available: https://forums.juniper.net/t5/Ethernet-Switching/
Buffer-size-Ex9200-line-card/td-p/477262

[60] A. Greenberg, “Stealthy, destructive malware infects half a million
routers,” Wired - Security, 2018.

[61] Z. Julian, “An overview of BGP hijacking,” Bishop Fox, 2015.
[62] C. Chiu and T. He, “Stealthy DGoS attack under passive and active

measurements,” in IEEE Globecom, December 2020.

Cho-Chun Chiu (S’20) received the B.S. degree
in Space Science and Engineering from National
Central University in 2009 and M.S. in Mechanical
Engineering from National Taiwan University in
2011. He is a Ph.D. student in Computer Science and
Engineering at the Pennsylvania State University, ad-
vised by Prof. Ting He. His research interest includes
computer networking, network security, differential
privacy, and federated learning.

Ting He (SM’13) received the B.S. degree in com-
puter science from Peking University, China, in 2003
and the Ph.D. degree in electrical and computer
engineering from Cornell University, Ithaca, NY, in
2007. Dr. He is an Associate Professor in the School
of Electrical Engineering and Computer Science
at Pennsylvania State University, University Park,
PA. Her work is in the broad areas of computer
networking, network modeling and optimization, and
statistical inference. Dr. He is a senior member of
IEEE, an Associate Editor for IEEE Transactions on

Communications (2017-2020) and IEEE/ACM Transactions on Networking
(2017-2021), and an Area TPC Chair of IEEE INFOCOM (2021). She
received multiple Outstanding Contributor Awards from IBM, and multiple
paper awards from ITA, ICDCS, SIGMETRICS, and ICASSP.

