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Abstract—As a tool to infer the internal state of a network
that cannot be measured directly, network tomography has been
extensively studied under the assumption that the measurements
truthfully reflect the end-to-end performance of measurement
paths, which makes the resulting solutions vulnerable to manip-
ulated measurements. In this work, we investigate the impact of
manipulated measurements via a recently proposed attack model
called the stealthy DeGrading of Service (DGoS) attack, which
aims at maximally degrading the performance of targeted paths
without exposing the manipulated links to network tomography.
While existing studies on this attack assumed that network
tomography only measures the paths actively used for data
transfer (via passive measurements), our model allows network
tomography to measure a larger set of paths, e.g., by sending
probes on some paths not carrying data flows. By developing and
analyzing the optimal attack strategy, we quantify the maximum
damage of such an attack. We further develop a defense strategy
by formulating and solving a Stackelberg game to select the
best set of measurement paths under a budget constraint. Our
evaluations on real topologies validate the efficacy of the proposed
defense strategy while identifying areas for further improvement.

Index Terms—Network tomography, Degrading of Service
attack, combinatorial optimization, integer linear programming,
measurement design.

I. INTRODUCTION

Network tomography [2] is a family of inference-based
techniques to monitor the internal state (e.g., link delays or
loss rates) of a network from external measurements. The
need of such techniques arises in many networks where the
internal network elements are accessible in the data plane but
inaccessible in the control plane, e.g., the public Internet and
all-optical networks.

Theoretically, network tomography works by inverting a
given observation model that captures the relationship between
the unknown link states and the observed path states, where
specific solutions differ in the observation models they assume,
e.g., a linear model for inferring additive link metrics such as
delays [3], [4], [5], a Boolean model for localizing failures [6],
[7], or various probabilistic models for accommodating perfor-
mance fluctuations (see [2] and references therein). However,
most of the existing works assumed that the measurements
truthfully reflect the performance of measurement paths, leav-
ing open what will happen when measurements can be ma-
nipulated by an attacker.
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Manipulated measurements fundamentally change the prob-
lem of network tomography, because instead of only changing
the link states (e.g., by imposing the same delay to all
the packets traversing a link), the attacker may manipulate
different packets traversing the same link differently (e.g., by
adding delays for packets with one source-destination pair but
not adding delays for packets with another source-destination
pair), thus changing the observation model. For example, a
link showing two different behaviors for two groups of flows
is effectively two different links, each traversed by one group
of flows. The impact of manipulated measurements on network
tomography only started to be realized recently [8], [9], under
linear observation models, where it was shown that the attacker
can substantially degrade path performances while misleading
network tomography to consider the manipulated links as well-
performing links. However, these studies implicitly assumed
that network tomography only collects passive measurements,
i.e., the performances of data packets, and thus only measures
the paths used for data transfer.

In practice, however, network tomography can monitor a
larger set of paths via active measurements obtained from
probes. Intuitively, augmenting passive measurements with
active measurements exposes the performances of a larger
set of paths and thus should help network tomography to
defend against attacks. In this work, we harden this intuition
by quantifying the maximum damage a stealthy attacker can
inflict on a network monitored by network tomography, and
developing a defense strategy by selecting the probing paths
to minimize this damage under a budget constraint.

A. Related Work
Network tomography is a rich family of network monitoring

techniques that infer network internal characteristics from
external measurements [2], [10]. Early works focused on best-
effort solutions, which tried to find the most likely network
state from given measurements, obtained by unicast [11], [12],
[13], [14], multicast [15], [16], [17], [18], [19], [20], and
their variations (e.g., bicast [21], flexicast [22], and back-to-
back unicast [23], [24], [20]). After observing that an arbitrary
set of measurements is frequently insufficient for identifying
all the link metrics [25], [12], [26], [27], [28], later works
focused on either reducing the ambiguity (e.g., by imposing
a tie breaker [13], [14], [29], or relaxing the objective [27],
[30], [31]), or ensuring identifiability by carefully designing
the monitor locations and the measurement paths (e.g., [3],
[4], [5], [32], [33], [6], [7]). All these works assume a
benign setting, where the links behave consistently and the
measurements are truthful.
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Very few works have considered network tomography in
an adversarial setting. In [34], an algorithm was proposed to
detect non-neutral links that discriminate packets on different
paths, by detecting the links that cause the network tomog-
raphy problem to be infeasible. There are also other works
on detecting network neutrality violations [36], [37], [38], but
these are engineering solutions utilizing information beyond
end-to-end performances (e.g., ports and other confounding
factors), falling out of the scope of network tomography.
Studies on network neutrality differ fundamentally from our
work in that they do not consider an intelligent adversary
that intentionally controls the non-neutral links to evade
detection. In contrast, only the following works considered
intelligent attacks against network tomography. In [8] [35],
optimizations were formulated to design the manipulations
at given compromised nodes in order to cause performance
degradation while scapegoating certain benign links as the
cause of poor performance; however, the set of compromised
nodes is not optimized. In [9], a similar but more sophisticated
attack model, called the stealthy DeGrading of Service (DGoS)
attack, was proposed, where the attacker jointly optimizes
where to attack (in terms of compromised links) and how to
attack (in terms of the manipulation on each path traversing
at least one compromised link). However, [8], [35], [9] all
assumed that the total performance degradation includes the
degradation on all the measurement paths, which implies that
only the paths carrying data flows are monitored by network
tomography. Our attack model is most similar to [9], except
that we accommodate both passive and active measurement
paths for network tomography.

In terms of defense, existing solutions [8], [35] focused on
detecting and localizing the attacker-controlled links, under
the assumption that the attacker neglects certain measurement
paths during attack design (and is hence exposed by these
paths). In this work, we will consider a more challenging
scenario, where the attacker is aware of all (possible) mea-
surement paths, and thus the designed attack is undetectable by
construction. Instead, we propose a proactive defense strategy
that designs the measurement paths to minimize the maximum
impact of all the undetectable attacks. Table I summarizes the
comparison between our work and the above existing works.

B. Summary of Contributions

Our goal is to analyze the impact of DGoS attack and de-
velop defenses in networks monitored by network tomography
that employs both passive and active measurements.

1) We extend the attack model in [9] to include both passive
measurement paths and active measurement paths, where only
the performance degradation on passive measurement paths
counts towards the damage caused by an attack.

2) We derive sufficient/necessary conditions for an attack
strategy to be optimal under the above attack model. Based on
these conditions, we establish the hardness of designing the

1Although [8], [35] mentioned the use of probes, their definition of damage
metric implies that only passive measurements are considered.

optimal attack, and develop efficient algorithms by converting
our problem to well-known integer programming problems.

3) Based on insights about the attack, we develop a defense
strategy by selecting the measurement paths to minimize the
maximum damage under a budget constraint. Although the
optimal defense is very hard to compute as evaluating the max-
imum damage under a given set of paths is already NP-hard,
we show that the complexity can be reduced by minimizing
an upper bound on the maximum damage, for which a mixed-
integer indefinite quadratic programming is formulated and a
polynomial-time greedy algorithm is proposed.

4) We evaluate the proposed attack and defense strategies on
a variety of real Internet topologies. Our evaluations show that:
(i) the proposed attack strategies achieve significantly more
performance degradation than intuitive alternatives and thus
better reveal the potential damage of DGoS attack, (ii) com-
pared to only monitoring passive measurement paths, adding
a few active measurement paths selected by the proposed de-
fense strategy can notably reduce the performance degradation,
but (iii) if not selected carefully, then many more paths need
to be monitored to achieve the same level of protection.

Roadmap. Section II formulates the generalized DGoS
attack that accounts for both passive and active measurement
paths. Section III analyzes the optimal attack and presents
algorithms for attack design. Section IV presents our defense
strategy and the associated algorithms. Section V evaluates the
proposed attack/defense algorithms on real Internet topologies.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

Table II summarizes the main notations used in this paper.

A. Network Model

We model the network as an undirected graph G = (N,L),
where N is the set of nodes and L the set of links. Each
link lj ∈ L is associated with an unknown metric xj that
describes its performance (the smaller, the better). We assume
that these link metrics are additive, i.e., a path metric equals
the sum of its link metrics. This is a canonical assumption
satisfied by several important performance metrics including
delays, jitters, log-success rates, and their statistics.

We assume that this network is monitored by a tomography-
based detection system that measures the end-to-end metrics
on a set P of paths to detect anomalies on link metrics. Let
Pd ⊆ P denote the passive measurement paths (traversed
by data packets) and P \ Pd the active measurement paths
(traversed by probes). Let R = (rij)pi∈P,lj∈L be the matrix
representation of P , called the measurement matrix, where
rij ∈ {0, 1} indicates if path pi traverses link lj . Let
ri = (rij)lj∈L be the i-th row in R. Given the measured
path metrics y = (yi)pi∈P , network tomography detects link
anomalies by finding a solution x̂ to Rx̂ = y and then com-
paring each inferred link metric x̂j with the maximum normal
delay τ : lj is considered “normal” if x̂j ≤ τ and “abnormal”
otherwise. To focus on anomalies caused by the attack, we
assume that the pre-attack link metrics are all normal, i.e.,
xj ≤ τ (∀lj ∈ L). Let τmax denote the maximum possible link
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TABLE I
COMPARISON WITH RELATED WORKS

paper intelligent attack optimized places of attack active measurements defense strategy

[34] no no no detection

[8], [35] yes no no1 detection

[9] yes yes no N/A

this work yes yes yes mitigation

TABLE II
NOTATIONS

L, Lm, Ln all/compromised/uncompromised links

P , Pc measurement paths, candidate measurement paths

Pd passive measurement paths

Pm, Pn compromised/uncompromised measurement paths

L′n uncompromised links only on compromised paths

wj traversal number of link lj ∈ L
T (L′) total traversal number of a set of links L′

CP ′ all cuts of a set of paths P ′

C∗
P ′ all cuts of P ′ with minimum total traversal number

R, ri measurement matrix, i-th row in measurement matrix

x, x̂ true/inferred link metrics

y measured path metrics

z adversarial manipulations of path metrics

ca costs of compromising links

cd costs of monitoring paths

ka, kd attack/defense budget

τ maximum metric of a normal link

τmax maximum possible link metric

α, β, γ variables of attack optimization (see (14))

δ variable of defense optimization (see (20))

metric, which is only used to ensure finite objective values and
can be arbitrarily large. We assume that τ ≤ τmax.

Remark: We note that the solution to Rx̂ = y may not
be unique as R may not have a full column rank [25],
[12], [26], [27], [28]. In this case, network tomography can
pick a solution by optimizing certain objective functions,
e.g., minimizing the number of abnormal links [13], [14] or
maximizing the posterior probability [29]. We do not assume
any specific objective function in this work.

B. Attack Model
Suppose that an attacker wants to degrade the performance

of paths in Pd without being localized by network tomography.
In this sense, Pd also represents the set of paths targeted by
the attacker (e.g., paths to/from certain hosts of interest).

The attack is mounted by first controlling a subset Lm ⊆ L
of links and then modifying the path metrics by z = (zi)pi∈P
through these links. Let caj (lj ∈ L) denote the cost of
compromising link lj , and ka denote the budget of the attacker.
We call Lm the compromised links and Ln := L \ Lm the
uncompromised links. We call the paths Pm ⊆ P traversing
at least one link in Lm the compromised paths, and the rest
Pn := P \ Pm the uncompromised paths.

To ensure that the attack is feasible, we adopt the following
assumptions from [8], [9]:

1) Only the metrics of compromised paths can be manipu-
lated, i.e., zi = 0 for any pi ∈ Pn.

2) The manipulation can only degrade (not improve) path
performance, i.e., zi ≥ 0 for any pi ∈ Pm.

The first assumption ensures that the attacker can only
manipulate the performance of packets traversing at least one
of the compromised links, and the second assumption ensures
that the manipulation is feasible (e.g., the injected delay is
non-negative). Moreover, to stay stealthy, the attacker must
ensure that (i) the network tomography problem remains
feasible under the manipulation, i.e., Rx̂ = Rx+z is feasible,
and (ii) there exists a feasible solution to x̂, according to
which all the compromised links appear normal.

Remark: When R is rank-deficient, there are multiple feasi-
ble solutions to x̂, and the above conditions (i–ii) provide cer-
tain stealthiness in the sense that the detection system cannot
say for sure that any of the compromised links are abnormal. If
how network tomography resolves ambiguity (e.g., [13], [14],
[29]) is known to the attacker, then he can achieve stronger
stealthiness by imposing an additional constraint that the de-
sired x̂ (which indicates all the compromised links as normal)
will be the solution selected by network tomography. We leave
the investigation under this formulation to future work.

Using a change of variable z = R(x̂ − x), we formulate
the problem of optimal attack design as follows:

max
Lm,x̂

∑
pi∈Pd

ri(x̂− x) (1a)

s.t. ri(x̂− x) = 0, ∀pi ∈ Pn, (1b)
τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (1c)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm, (1d)∑
lj∈Lm

caj ≤ ka, (1e)

Lm ⊆ L, (1f)

where Pn = {pi ∈ P : pi ∩ Lm = ∅} and Ln = L \ Lm by
definition. In words, (1) designs “where to attack” (represented
by Lm) and “how to attack” (represented by x̂) to maximize
the total degradation on the paths of interest (1a), subject to
feasibility (1b), stealthiness (1c)(1d), and budget constraints
(1e). The above formulation generalizes the stealthy DGoS
attack proposed in [9, (1)] in that: (i) only degradation on
the paths in Pd is included in the objective, which allows us
to model both passive and active measurements for network
tomography, and (ii) a budget constraint (1e) is added to
capture the resource constraint faced by a realistic attacker.
As shown later, these differences lead to subtle but critical
changes in the solution.
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C. Defense Model

As the detection system cannot access individual links
(hence the need of network tomography) and the DGoS attack
is designed to evade detection, the best defense from the
perspective of the detection system is to minimize the damage
of such an attack. Specifically, while the passive measurement
paths Pd are usually dictated by the needs of data flows, the
active measurement paths P \ Pd are controlled by network
tomography and thus can be designed to mitigate the attack.
Similar ideas of designing the measurements have been widely
applied to network tomography in the benign setting [3], [4],
[5], [32], [33], [6], [7].

Let Pc denote the set of candidate measurement paths (e.g.,
all the routing paths involving the terminals controlled by
network tomography), including the paths in Pd. Suppose that
monitoring each path pi ∈ Pc incurs a cost of cdi , and the
defender (i.e., measurement designer) has a budget of kd. As
passive measurements are byproducts of data communications
and do not consume extra network resources, we assume that
cdi ≡ 0 for all pi ∈ Pd, which implies that Pd ⊆ P .

We formulate the problem of optimal defense design as the
following bilevel optimization:

min
P⊆Pc

max
Lm,x̂

∑
pi∈Pd

ri(x̂− x) (2a)

s.t. ri(x̂− x) = 0, ∀pi ∈ Pn, (2b)
τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (2c)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm, (2d)∑
lj∈Lm

caj ≤ ka, (2e)

∑
pi∈P

cdi ≤ kd, (2f)

Lm ⊆ L. (2g)

The above problem is a Stackelberg game, where the defender
is the leader, and the attacker is the follower. The two players
interact via the bilevel optimization (2). At the upper-level,
the defender selects the measurement paths P out of Pc to
minimize the worst-case performance degradation that can be
caused by the attacker, where (2f) captures the budget con-
straint for the defender. At the lower-level, the attacker designs
the parameters Lm and x̂ of the DGoS attack as in (1) to
achieve the maximum damage on Pd while evading detection.

Remark 1: The bilevel optimization implicitly assumes that
the action of the defender (i.e., P ) is known to the attacker.
This can happen if the attacker is able to monitor all the
candidate paths (e.g., by intersecting traffic at the gateway
router of a targeted organization) to identify the active paths
traversed by data packets or probes. Generally, letting P̂
denote the attacker’s estimate of the paths monitored by
network tomography, the assumption of P̂ = P leads to a
conservative defense strategy, and the actual attack can be non-
stealthy (if P\P̂ 6= ∅) or less effective (if P̂\P 6= ∅). However,
as the attacker’s knowledge is unknown to the defender at the
time of measurement design, this assumption allows us to plan
for the worst case.

Remark 2: The defense formulation in (2) aims at mitigating
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Fig. 1. Example: (a) assume Pd = {p3} and initial delay is 10 ms
on each link; (b) under monitored paths {p2, p3, p5}, the maximum
delay degradation on Pd is 3960 ms (link labels indicate x̂), (c) under
monitored paths {p1, p3, p4}, the maximum delay degradation on Pd
is 1980 ms.

the impact of the worst attack subject to budget and stealthi-
ness constraints. If other attack strategies are used under the
designed measurement paths P , they will be non-stealthy,
more expensive, or less damaging. The objective value of
(2) under a given P represents the maximum performance
degradation that can be caused by a stealthy attack within
budget ka if the paths in P are monitored, and the actual
performance degradation can only be smaller.

D. Motivating Example

For the attacker, while intuitively compromising all the links
gives the attacker the most flexibility in manipulating the
measurements, and should therefore be the optimal strategy,
we have shown that this is not true via a counterexample [9],
since compromised links will also impose limitations on
how much degradation can be injected on paths due to the
stealthiness constraint. For the defender, intuitively monitoring
the paths in Pc\Pd that cover more links in ∪p∈Pd

p, in addition
to Pd, would better mitigate the performance degradation
injected by the attacker on Pd. However, we will show that
this strategy is generally suboptimal. Consider the example in
Fig. 1 (a), where Pd = {p3}. Suppose that before the attack,
each link has a delay of 10 ms, τ = 10 ms, and τmax = 1000
ms. Fig. 1 (b) shows the optimal attack parameters (Lm, x̂)
under the monitoring of paths {p2, p3, p5}, increasing the
delay on p3 by 3960 ms. In Fig. 1 (c), under the monitoring
of paths {p1, p3, p4}, the maximum delay degradation on p3
is only 1980 ms. Even though paths {p2, p5} cover more
links on p3 than paths {p1, p4}, monitoring {p1, p4} by active
measurements will provide better protection for the data flow
on p3, as these paths provide more fine-grained information
for network tomography and hence make it harder for the
attacker to inject delays without being localized. This example
demonstrates the potential to limit the damage of stealthy
DGoS attacks by carefully selecting the (active) measurement
paths and the nontrivialness of such selection.

III. OPTIMAL ATTACK STRATEGY

Given the set of compromised links Lm, (1) is a linear
program (LP) in x̂ that can be solved in polynomial time
by standard LP solvers. Meanwhile, optimizing Lm is a
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combinatorial optimization problem, with an objective F (Lm)
that denotes the optimal value of (1a) under a given Lm.
The main challenge is that the objective function F (Lm) is
not an explicit function of the decision variable Lm. Below,
we propose two approaches to turn F (Lm) into an explicit
function of Lm, which then lead to efficient algorithms.

A. Attack under Unlimited Budget

First, consider the case that the attacker has an unlimited
budget, i.e. the constraint (1e) is removed.

1) Property of the Optimal Lm: In the case of unlimited
budget, we will establish sufficient/necessary conditions for a
given Lm to be optimal for (1). To this end, we introduce the
following definitions.

Definition 1. Given P and Pd, we define:

1) the traversal number wj :=
∑
pi∈Pd

rij for link lj as the
number of paths in Pd that traverse lj ,

2) T (L′) :=
∑
lj∈L′ wj as the total traversal number of a

set of links L′,
3) a set of links L′ as a cut of a set of paths P ′ if every

pi ∈ P ′ traverses at least one link in L′,
4) CP ′ as the collection of all the cuts of P ′, and
5) C∗P ′ as the collection of all the cuts of P ′ with the

minimum total traversal number, i.e., C∗P ′ := {L′ ∈
CP ′ |T (L′) ≤ T (L′′), ∀L′′ ∈ CP ′}.

Based on these definitions, we can state the optimality
conditions as follows.

Theorem III.1. A set of compromised links Lm is optimal if
it is a cut of P with the minimal T (Lm), i.e., Lm ∈ C∗P .

Proof. Step 1. We claim that if there exists an uncompromised
path, then by carefully selecting a link to compromise, the
objective value (1a) will increase monotonically. To show this,
suppose that under an initial solution L

(0)
m , there is at least

one uncompromised path pi∗ ∈ P
(0)
n . Then we are going

to compromise a link on path pi∗ . Given Lm = L
(0)
m , the

optimization in (1) is reduced to:

max
∑
pi∈Pd

ri(x̂− x) (3a)

s.t. ri(x̂− x) = 0, ∀pi ∈ P (0)
n , (3b)

τmax ≥ x̂j ≥ 0, ∀lj ∈ L(0)
n , (3c)

τ ≥ x̂j ≥ 0, ∀lj ∈ L(0)
m . (3d)

Let x̂(0) be the optimal x̂ for (3). We observe that there must
exist a link lj∗ ∈ pi∗ for which x̂

(0)
j∗ ≤ τ , as otherwise (i.e.,

x̂
(0)
j > τ for all lj ∈ pi∗ ), we will have ri∗ x̂

(0) > |pi∗ |τ ≥
ri∗x, where |pi∗ | is the hop count of pi∗ . This contradicts
with ri∗ x̂

(0) = ri∗x according to constraint (3b). As a result,
for the link lj∗ , adding a constraint x̂j∗ ≤ τ is not going to
change the optimal solution.

After compromising link lj∗ , i.e., for Lm = L
(1)
m := L

(0)
m ∪

{lj∗}, the optimization in (1) becomes

max
∑
pi∈Pd

ri(x̂− x) (4a)

s.t. ri(x̂− x) = 0, ∀pi ∈ P (1)
n , (4b)

τmax ≥ x̂j ≥ 0, ∀lj ∈ L(1)
n , (4c)

τ ≥ x̂j ≥ 0, ∀lj ∈ L(1)
m , (4d)

where L(1)
m (L(1)

n ) is the new set of compromised (uncompro-
mised) links, and P (1)

m (P (1)
n ) is the new set of compromised

(uncompromised) paths. Since P
(1)
n ⊆ P

(0)
n , L(1)

n = L
(0)
n \

{lj∗}, and L
(1)
m = L

(0)
m ∪ {lj∗}, any feasible solution to (3)

with the added constraint x̂j∗ ≤ τ remains feasible for (4).
Therefore, if f(x̂) denotes the objective function (4a) and x̂(1)

is the optimal x̂ for (4), then f(x̂(1)) ≥ f(x̂(0)). This implies
that one of the optimal solutions must be a cut in CP .

Step 2. Next, we are going to show that among all the cuts
in CP , the optimal cut must be the one that minimizes the
T (Lm). By definition, if Lm is a cut of P , then Pm = P and
Pn = ∅, which simplifies (1) for a given Lm to

max
∑
pi∈Pd

ri(x̂− x) (5a)

s.t. τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (5b)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm. (5c)

It is easy to see that the optimal solution to (5) is x̂j = τ if
lj ∈ Lm and x̂j = τmax if lj ∈ Ln. Under this solution, the
objective value of (5) equals∑
pi∈Pd

(τ
∑
lj∈Lm

rij + τmax(
∑
lj∈L

rij −
∑
lj∈Lm

rij))−
∑
pi∈Pd

rix

= (τ − τmax)
∑
pi∈Pd

∑
lj∈Lm

rij + τmax

∑
pi∈Pd

∑
lj∈L

rij −
∑
pi∈Pd

rix,

(6)

where only the first term of (6) depends on Lm. As τ −
τmax ≤ 0, maximizing (6) is equivalent to minimizing∑
pi∈Pd

∑
lj∈Lm

rij =
∑
lj∈Lm

wj . Thus, all the cuts with
the minimum T (Lm) are equally optimal for (1). Since as
proved in step 1, one of the optimal solutions must be a cut
in CP , every Lm ∈ C∗P is optimal for (1).

Remark: Theorem III.1 generalizes [9, Theorem III.1],
which states that in the case of Pd = P , the minimal traversal
cut of P achieves optimality, where the traversal number of a
link is defined as the total number of paths in P that traverse
it. Theorem III.1 extends this statement to the case of Pd ⊆ P
by redefining the traversal number for a link to only count the
paths in Pd that traverse this link.

Fig. 2. Lm ∈ C∗P is not necessary for optimality.
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While Theorem III.1 gives a sufficient condition to achieve
optimality, it does not rule out other possibilities. We show that
Lm ∈ C∗P is not always necessary by a simple example. In the
example shown in Fig. 2, suppose that

∑n
i=2 xi ≥ τmax. It is

easy to see that the optimal solution can be Lm = {l1} (x̂1 =
τ, x̂2 = τmax) or Lm = {l2} (x̂1 = τmax, x̂2 = τ ). The opti-
mal solution {l1} /∈ C∗P shows that Lm ∈ C∗P is not a necessary
condition. Generally, it may not be necessary to compromise
an active measurement path if its metric is sufficiently large
(≥ τmax). Nevertheless, we will show that compromising all
the paths in Pd is necessary under mild conditions.

Theorem III.2. If τ > xj (∀lj ∈ L), a set of compromised
links Lm is optimal only if Lm ∈ CPd

.

Proof. We prove the claim by contradiction. Assume that an
optimal solution to (1) is x̂(0) and L(0)

m /∈ CPd
. Since L(0)

m /∈
CPd

, there must exist an uncompromised path pi∗ ∈ P (0)
n such

that pi∗ ∈ Pd. We will show that the performance degradation
can be strictly increased by compromising pi∗ .

Firstly, we claim that there must exist a link lj∗ ∈ pi∗ such
that x̂(0)j∗ < τ , as otherwise, we will have ri∗ x̂

(0) ≥ |pi∗ |τ >
ri∗x (because of τ > xj), which contradicts with ri∗ x̂

(0) =
ri∗x according to (1b).

Next, consider another solution where Lm = L
(1)
m := L

(0)
m ∪

{lj∗} and x̂ = x̂′, defined as

x̂′j =

{
x̂
(0)
j , if j 6= j∗,

τ, if j = j∗.
(7)

It is easy to verify that this is a feasible solution to (1).
Let F (Lm, x̂) be the objective value of (1) under solution

(Lm, x̂). Then

F (L(0)
m , x̂(0))− F (L(1)

m , x̂′) (8a)

=
∑
pi∈Pd

ri(x̂
(0) − x̂′) (8b)

=
∑
pi∈Pd

rij∗(x̂
(0)
j∗ − τ). (8c)

Since pi∗ ∈ Pd, lj∗ ∈ pi∗ (i.e. ri∗j∗ = 1), and x̂
(0)
j∗ < τ ,∑

pi∈Pd
rij∗(x̂

(0)
j∗ − τ) < 0, i.e., the objective value of solu-

tion (L
(0)
m , x̂(0)) can be increased by another solution, which

contradicts the assumption that (L
(0)
m , x̂(0)) is optimal.

Theorems III.1 and III.2 imply the following condition.

Corollary III.3. If Pd = P and τ > xj (∀lj ∈ L), then a set
of compromised links Lm is optimal if and only if Lm ∈ C∗P .

Proof. We know from Theorem III.2 that Lm is optimal only
if Lm ∈ CP since Pd = P . Then from Step 2 in the proof
of Theorem III.1, we know that Lm is optimal in CP only
if it has the minimal T (Lm) among all the cuts in CP . This
together with Theorem III.1 completes the proof.

2) Hardness and Algorithm Design: Theorem III.1 implies
that finding a minimum-traversal cut Lm ∈ C∗P will give
an optimal solution to (1). This reduces (1) to the following
combinatorial optimization problem.

Algorithm 1: Greedy GALS
input : P , Pd
output: Compromised links Lm

1 Pm ← ∅;
2 Lm ← ∅;
3 wj ←

∑
pi∈Pd

rij ;
4 while Pm 6= P do
5 Find the link lj with the smallest ratio wj

|Pj\Pm| ;
6 Pm ← Pm ∪ Pj ;
7 Lm ← Lm ∪ {lj};
8 return Lm;

Definition 2. Given a set of paths P and a subset Pd ⊆ P , the
generalized adversarial link selection (GALS) problem aims
at finding the cut of P with the minimum T (Lm):

min
Lm∈CP

T (Lm) =
∑
lj∈Lm

wj . (9)

GALS generalizes the adversarial link selection (ALS) prob-
lem formulated in [9] in that the traversal number wj only
counts the traversals by paths in Pd. Nevertheless, given Pd,
the traversal number of each link is a constant, and thus the
solutions for ALS and GALS are the same.

Specifically, since ALS is NP-hard [9], GALS is also NP-
hard. Moreover, similarly to the reduction of ALS to the
weighted set cover (WSC) problem [9], GALS can also be
reduced to WSC, and can thus leverage existing algorithms
designed for WSC. One such algorithm is the greedy algo-
rithm, shown in Algorithm 1. The algorithm iterates until all
the paths are compromised (line 4), where in each iteration, it
picks a link with the smallest cost-value ratio (line 5) and adds
it to the set of compromised links (lines 6–7). Here, we define
the cost-value ratio of link lj by wj/|Pj \ Pm|, where Pj is
the set of paths traversing link lj . It is known [39] that this
greedy algorithm has the best approximation factor for WSC,
which is Θ(log |P |) in our case. The while loop (lines 4–7) is
repeated O(|L|) times, each iteration taking O(|L| · |P |) time
(due to line 5), leading to an overall complexity of O(|L|2|P |).

B. Attack under Limited Budget

In the general case of ka < ∞, the attacker may not have
sufficient budget to compromise the minimum-traversal cut,
and thus the optimal strategy needs to be adapted.

1) Property of the Asymptotically Optimal Lm: For a
general Lm, it is difficult to write the optimal value of (1a)
wrt x̂ as an explicit function of Lm. Nevertheless, we find the
following approximation to be asymptotically accurate.

Definition 3. Given a set of paths P , a subset Pd ⊆ P ,
and the cost caj for each link lj , the generalized constrained
adversarial link selection (GCALS) problem aims at:

max
Lm

T (L′n) :=
∑
lj∈L′n

wj (10a)

s.t.
∑
lj∈Lm

caj ≤ ka, (10b)

Lm ⊆ L, (10c)
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where L′n := Ln \ ∪p∈Pn
p is the set of uncompromised links

that are only traversed by compromised paths.

We show that when τmax is large, GCALS is asymptotically
equivalent to the original optimization (1).

Theorem III.4. As τmax →∞, Lm = L∗m is optimal for (1)
if and only if L∗m is an optimal solution to GCALS.

Proof. We rewrite the objective function (1a) as∑
pi∈Pd

∑
lj∈L

rij(x̂j − xj) =
∑
lj∈L

∑
pi∈Pd

rij(x̂j − xj). (11)

If lj ∈ Lm, then x̂j ≤ τ by (1d). If lj ∈ Ln, then x̂j ≤
min(τmax, mini: pi∈Pn,rij=1 rix) by (1b,1c). For a large τmax,
x̂j can achieve τmax if and only if lj ∈ L′n. Thus, as τmax →
∞, the optimal value of (11) wrt x̂ is approximately:

τmax

∑
lj∈L′n

∑
pi∈Pd

rij = τmax

∑
lj∈L′n

wj ∝ T (L′n) (12)

That is, the optimal objective value of (1) under a given Lm
is asymptotically proportional to T (L′n), which completes the
proof.

2) Hardness and Algorithm Design: First, we will show
that GCALS problem is NP-hard.

Theorem III.5. The GCALS problem (10) is NP-hard.

Proof. The idea is to show that GCALS is actually a gener-
alization of GALS, and hence its NP-hardness is implied by
the NP-hardness of GALS.

To this end, consider a special case of GCALS, where it is
known that it suffices to optimize Lm among the cuts in CP .
If Lm ∈ CP , then L′n = Ln, and hence T (L′n) = T (Ln). As

T (Ln) + T (Lm) = T (L), (13)

where the right-hand side is a constant, maximizing T (Ln) is
equivalent to minimizing T (Lm), which is the GALS problem.

Next, we will develop a solution by formulating this prob-
lem as an integer linear programming (ILP) problem:

max
αj ,βj ,γj

∑
lj∈L

γjwj (14a)

s.t.
∑
h

αhrih ≥ rijβj ∀lj ∈ L,∀pi ∈ P, (14b)∑
lj∈L

cajαj ≤ ka ∀lj ∈ L, (14c)

γj ≤ 1− αj ∀lj ∈ L, (14d)
γj ≤ βj ∀lj ∈ L, (14e)
γj ≥ βj − αj ∀lj ∈ L, (14f)
αj , βj , γj ∈ {0, 1} ∀lj ∈ L. (14g)

Lemma III.6. The optimization (14) is equivalent to the
optimization (10), where lj ∈ Lm if and only if αj = 1.

Proof. Let αj ∈ {0, 1} be the indicator of whether link lj is
compromised:

αj =

{
1, if lj ∈ Lm,
0, otherwise, (15)

which is subject to the budget constraint (14c).
Due to constraint (14b), we know that (i) if there is at least

one uncompromised path pi traversing link lj , i.e., ∃i such that∑
h αhrih = 0 and rij = 1, then βj ≤ 0, and (ii) otherwise,

i.e.,
∑
h αhrih ≥ 1 for every i such that rij = 1, then

βj ≤ 1. Moreover, constraints (14d–14g) collectively imply
that γj = βj(1− αj), i.e., the objective (14a) is to maximize∑
lj∈L βj(1 − αj)wj . Since (1 − αj)wj is non-negative, the

optimal value of βj should equal its upper bound, i.e.,

βj =

{
1 if lj is only traversed by paths in Pm,
0 otherwise. (16)

Therefore, γj = βj(1 − αj) = 1 if and only if lj is an
uncompromised link that is only traversed by compromised
paths, i.e., lj ∈ L′n. Thus, the objective (14a) is equivalent to
(10a), which completes the proof.

The ILP formulation (14) allows us to leverage techniques
for solving ILP to solve the GCALS problem (10). In particu-
lar, one commonly-used approach is to relax the ILP into an LP
by relaxing the integer constraint (14g) into αj , βj , γj ∈ [0, 1].
After solving this LP relaxation for a fractional solution,
we can use various rounding techniques to convert it into a
feasible solution to the original problem. A rounding scheme
we find to be particularly effective is as follows. For a link lj ,
we define the value-cost ratio as

α′j |Pj\Pm|
caj

, where Pj is the
set of paths traversing link lj and α′j is the fractional solution
of αj from the LP relaxation. We then iteratively select links
into Lm until reaching the budget, where in each iteration, we
select the link lj with the largest value-cost ratio. We refer to
this algorithm as “LP relaxation with rounding (LP-R)”, for
which the pseudo code is given in Algorithm 2. It remains
open whether there exists a polynomial-time algorithm with
approximation guarantee for GCALS.

The while loop (lines 5–10) is repeated O(|L|) times, and
each iteration takes O(|L||P |) time. Thus the while loop takes
O(|L|2|P |) time. Before the while loop, the LP (line 4) needs
to be solved. In most cases, the time solving the LP dominates
the overall time complexity. Therefore, the time complexity
of Algorithm 2 is equivalent to solving a LP problem. For
example, its complexity will be O(|L|4(|P |+ |L|)2.5) if using
Vaidya’s algorithm [40] to solve the LP.

IV. OPTIMAL DEFENSE STRATEGY

Armed with explicit characterizations of the optimal attack
strategy, we now solve the defender’s problem (2).

A. Defense under Unlimited Budget

Intuitively, monitoring more paths will increase the observ-
ability of network tomography and hence reduce the damage
caused by undetectable attacks. We confirm this intuition in
the following lemma.
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Algorithm 2: LP relaxation with Rounding (LP-R)
input : P, Pd, ka
output: Compromised links Lm

1 Lc ← L \ {lj ∈ L|caj > ka};
// candidate links

2 Lm ← ∅;
3 Pm ← ∅;
4 (α′j , β

′
j , γ
′
j)lj∈L ← solving the LP relaxation of (14);

5 while Pm ⊂ P and Lc 6= ∅ do
6 Find the link lj ∈ Lc with the largest ratio

α′j |Pj\Pm|
caj

;
7 ka ← ka − caj ;
8 Lc ← (Lc \ {lj}) \ {lj′ ∈ Lc|caj′ > ka};
9 Lm ← Lm ∪ {lj};

10 Pm ← Pm ∪ Pj ;
11 return Lm;

Lemma IV.1. Given any measurement paths P , monitoring
one more path can only decrease the maximum damage in (2a).

Proof. We prove the lemma by arguing that removing (i.e., not
monitoring) a measurement path can only increase the max-
imum damage. Let (L

(0)
m , x̂(0)) be the optimal attack design

when the set of measurement paths is P , achieving damage
d(P ). After removing p ∈ P from the measurement paths, the
attacker’s problem remains the same, except that the constraint
(2b) corresponding to p (if p is uncompromised) is removed.
This means that (L

(0)
m , x̂(0)) remains a feasible solution to

the attacker’s problem, and thus the maximum damage under
measurement paths P \ {p} is no smaller than d(P ).

According to Lemma IV.1, if kd is unlimited, then we
should simply monitor all the candidate paths, which mini-
mizes the maximum damage that can be caused by the attacker.

B. Defense under Limited Budget

Now we focus on the more general and practical case when
the defender has a limited budget kd <

∑
pi∈Pc

cdi , which re-
quires a careful selection of which candidate paths to monitor.

1) Hardness: We start by establishing the hardness of this
problem.

Theorem IV.2. The defense optimization (2) is NP-hard.

Proof. We first prove that the decision version of the attack
optimization (1) is NP-hard by a reduction from ALS [9],
which aims at finding a cut of P with the minimum total
traversal number by P . Given an instance of ALS, we can
construct its corresponding attack optimization problem by
setting Pd = P , τmax = 2, τ = 1, and xj = 0,∀lj ∈ L.
The objective value for the constructed problem is

max
∑
pi∈Pd

ri(x̂− x) ≤ 2
∑
pi∈Pd

‖ri‖1 ≤ 2|P ||L|. (17)

Moreover, the optimal objective value will be an integer, since
under constraints (1b) (1c) (1d), the optimal value of x̂j would
be the following:

x̂j =

 0, if lj ∈ ∪p∈Pnp, due to (1b),
1, if lj ∈ Lm, due to (1d),
2, otherwise, due to (1c).

(18)

As a result, the optimal objective value d∗ of the constructed
attack optimization is an integer in [0, 2|P ||L|]. It can be
computed in O(log(|P ||L|)) time by a binary search based
on a solution to the related decision problem: is d∗ smaller
than d? Since τ = 1 > 0 = xj , according to Corollary III.3,
the optimal L∗m for the constructed problem is the optimal
solution to the corresponding instance of ALS. Thus, the
optimal objective value OPTALS of this instance of ALS can
be derived from d∗ according to (6):

OPTALS = 2
∑
pi∈Pd

∑
lj∈L

rij − d∗. (19)

Since the time complexity of this reduction is polynomial and
solving OPTALS is NP-hard [9], the decision version of the
attack optimization (1) is NP-hard.

Next, consider the decision problem related to the defense
optimization (2): is there a design of P under which the
maximum damage is smaller than d? Given a certificate
P ∗ ⊆ Pc, the verifier must solve the decision version of the
attack optimization for P = P ∗, which is NP-hard. In other
words, the decision problem of the defense optimization can
not be verified in polynomial time, unless P = NP . Since
the related decision problem is not in NP (unless P = NP ),
the defense optimization (2) is not in NP [41], and is thus
NP-hard.

2) Algorithm Design: By Theorem III.4, when τmax is
large, GCALS is asymptotically equivalent to the attack opti-
mization (1). Although both problems are NP-hard, GCALS
has an ILP formulation (14), which can be relaxed into an LP
to be solved efficiently. Therefore, we propose to use the LP
relaxation of GCALS as a proxy of the attack optimization (1)
to guide the defense optimization.

Based on this idea, we reformulate the defense optimization
(2) by replacing the lower-level optimization with the LP
relaxation of (14):

min
δ

max
α,β,γ

γTw (20a)

s.t. 1− δi + riα ≥ rijβj ∀lj ∈ L,∀pi ∈ Pc, (20b)

γ ≤ 1|L| −α, (20c)
γ ≤ β, (20d)
γ ≥ β −α, (20e)

(ca)Tα ≤ ka, (20f)

(cd)T δ ≤ kd, (20g)

0|L| ≤ α,β,γ ≤ 1|L|, (20h)

δ ∈ {0, 1}|Pc|, (20i)

where except for ri, all the vectors are column vectors, 0|L|

and 1|L| denote |L|-dimensional vectors of all 0’s or 1’s, and
all the inequalities are element-wise inequalities. Here δ :=
(δi)pi∈Pc is the defense decision variable, where

δi =

{
1, if pi ∈ P, i.e., pi is monitored,
0, otherwise, (21)

and α := (αj)lj∈L, β := (βj)lj∈L, γ := (γj)lj∈L are attack
decision variables as in (14). Other than introducing the upper-
level optimization, a minor difference between (20) and (14)
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Algorithm 3: Greedy Defense
input : Pc, Pd, kd, cd, ka, ca

output: paths to monitor P
1 P ← Pd;
2 Pc ← (Pc \ Pd) \ {pi ∈ Pc|cdi > kd};
3 while Pc 6= ∅ do
4 Find a path pi ∈ Pc with the largest VP (pi; Pd,c

a,ka)

cdi
;

5 P ← P ∪ {pi};
6 kd ← kd − cdi ;
7 Pc ← (Pc \ {pi}) \ {pi′ ∈ Pc|cdi′ > kd};
8 return P ;

is the addition of (1 − δi) to (20b), which allows βj to be
1 as long as link lj is only traversed by compromised paths
or unmonitored paths. In other words, the links only traversed
by compromised paths or unmonitored paths will be used to
explain the cause of performance degradation. It is easy to
verify that for any given δ, (20) is the same as (14), except
that (20h) relaxes the corresponding integer constraint (14g).

Relationship between (20) and (2): The relaxation of integer
constraints in (20h) helps to reduce the computation complex-
ity. Specifically, the defense optimization (2) is not in NP,
but (20) is in NP, since given a certificate P ∗, its decision
problem can be verified by solving as an LP. On the other hand,
this relaxation changes the defense objective from minimizing
the maximum damage to minimizing an upper bound on the
maximum damage. Empirically, we find that even though the
gap between the upper bound and the actual maximum damage
is not negligible, the trend is preserved: minimizing the upper
bound tends to minimize the maximum damage.

Greedy heuristic: The new formulation (20) enables us to
apply the greedy heuristic to obtain a (possibly suboptimal)
solution in polynomial time. Given a set of measurement
paths P , define D(P ; Pd, c

a, ka) as the optimal objective
value of (20) under δ defined as in (21) (recall from Def-
inition 1 that Pd determines the traversal numbers w :=
(wj)lj∈L). Given pi 6∈ P , define VP (pi; Pd, c

a, ka) as the
decrease of this objective value by monitoring one more path
pi, i.e., VP (pi; Pd, c

a, ka) := D(P ; Pd, c
a, ka) − D(P ∪

{pi}; Pd, ca, ka). Algorithm 3 iteratively selects paths into
P such that in each iteration, the selected path maximizes
VP (pi; Pd,c

a,ka)

cdi
, i.e., the reduction of the (upper bound on the)

maximum damage per unit cost. The iteration continues until
the defense budget kd is exhausted.

Since D(P ; Pd, c
a, ka) can be evaluated by an LP solver,

O(|Pc|) paths are examined in each iteration, and there are at
most O(|Pc|) iterations, the time complexity of Algorithm 3
is O(Γ|Pc|2), where Γ is the time for solving the LP for
D(P ; Pd, c

a, ka), e.g., Γ = O(|L|4.5|Pc|2.5) if using Vaidya’s
algorithm [40]2. Although this complexity is a high-order
polynomial in |L| and |Pc|, we argue that it is acceptable in
practice as the algorithm is only run offline. Moreover, while
not theoretically guaranteed, we empirically find Algorithm 3
to be near-optimal for (20).

2This algorithm has a worst-case complexity of O((n+m)1.5nB) for an
LP with n variables, m constraints, and B input bits. In our case, n = O(|L|),
m = O(|L||Pc|), and B = O(|L|2|Pc|).

Exact solution: To solve (20) exactly, we convert the bi-
level optimization into a single-level optimization, which can
then be solved numerically for small problem instances.

Theorem IV.3. The optimization (20) is equivalent to the
following optimization problem:

min
δ,b

aT b (22a)

s.t. Ab ≥ d, (22b)

(cd)T δ ≤ kd, (22c)

δ ∈ {0, 1}|Pc|, (22d)

b ≥ 01+|L|(|Pc|+6), (22e)

where a and d are defined as follows:

a =

ka

1− δ
...

1− δ
1
0




1st |Pc| rows

|L|th |Pc| rows
4|L| rows
2|L| rows

, (23)

d =
0
0
w


 |L| rows
|L| rows
|L| rows

. (24)

The coefficient matrix A is defined in (26), where R =
(rij)pi∈Pc,lj∈L is the matrix representation of Pc as defined
in Section II-A, I ∈ R|L|×|L| is the identity matrix, and
Mj ∈ R|L|×|L| (j = 1, . . . , |L|) is zero everywhere except
that the j-th diagonal entry is 1.

Proof. The idea is to take the dual of the lower-level maxi-
mization problem in (20), which yields:

min
b
aT b (25a)

s.t. Ab ≥ d, (25b)

(cd)T δ ≤ kd, (25c)

δ ∈ {0, 1}|Pc|, (25d)

b ≥ 01+|L|(|Pc|+6), (25e)

where b (a column vector) is the dual variable, δ is a given
solution to the upper-level optimization problem, and the
other parameters are defined as in (22). Since the lower-level
optimization problem is an LP, its dual problem, which is
a minimization, has the same optimal objective value due
to the strong duality of LP. Once we transform the lower-
level maximization problem into a minimization problem (25),
the original minimax problem (20) becomes a minimization
problem (22).

Let f := aT b denote the objective function of (22). Since f
is twice differentiable, the Hessian O2f can be evaluated. As
f is quadratic in the variables δ and b, O2f 6= 0. However,
f is only linear in individual variables, and thus ∂2

∂δ2i
f = 0

for each δi and ∂2

∂b2j
f = 0 for each bj , i.e., all the diagonal

elements of O2f are zero. This implies that the eigenvalues of



10

A =

ca −RT · · · −RT I 0 0 I 0 −I
0 M1RT · · · M|L|RT 0 I 0 0 −I I

0 0 · · · 0 0 0 I I I −I



|L| rows

|L| rows

|L| rows

|Pc| columns |L| columns

(26)

TABLE III
PARAMETERS OF ISP TOPOLOGIES

Network #nodes #links #candidate terminals4

Bics 33 48 16

BTN 53 65 25

Colt 153 191 45

Cogent 197 245 21

AS 20965 968 8283 75

AS 8717 1778 3755 1075

O2f sum to zero. However, the eigenvalues cannot be all zero,
as otherwise the eigen decomposition O2f = QTΛQ = 0,
contradicting with O2f 6= 0. Thus, O2f must have at least
one negative eigenvalue and at least one positive eigenvalue.
That is, f is non-convex in δ and b, and (22) is a mixed-integer
indefinite quadratic programming (MIIQP) problem. MIIQP is
generally NP-hard, but can be solved for small instances (e.g.,
by the branch-and-bound algorithm [42]).

V. PERFORMANCE EVALUATION

To understand the potential damage of the generalized
DGoS attack and validate the efficacy of the proposed de-
fense, we evaluate the proposed algorithms as well as their
benchmarks on real Internet topologies. We implement the
algorithms in Python3, and solve the numerical optimization
problems by the commercial optimizer Gurobi.

A. Experiment Setup

1) Network Topology: We use real Internet topologies from
public datasets, whose parameters are shown in Table III.
The first four topologies are Point of Presence (PoP) level
topologies from the Internet Topology Zoo [43], and the last
two topologies are router-level topologies from the CAIDA
project [44].

2) Candidate Measurement Paths: For each topology, we
select a given number of terminals5 from low-degree nodes
(degree ≤ 2), and compute Pc as the set of shortest paths (in
hop count) between all pairs of terminals, with ties broken
arbitrarily. We then randomly select a subset of paths in Pc as
Pd, i.e., the paths carrying active data flows.

3) Other Parameters: Before the attack, each link has a
delay sampled from the interval of [0, 20) (ms) uniformly
at random. The cost of compromising each link is drawn
uniformly at random from the interval of [0, 2), where a
lower cost indicates a more vulnerable link (e.g., built by an
older technology or managed by a less trusted provider) and

3Code: https://github.com/cuc496/Analysis-of-Active-measurement.
4For Bics, these are all the nodes with degree ≤ 2; for the other networks,

these are all the nodes with degree one.
5The number of terminals is our evaluation is limited due to its impact on

the complexity of Algorithm 3, which is a high-order polynomial in |Pc| that
is in turn quadratic in the number of terminals.

vice versa. The cost of monitoring a path in Pc \Pd is chosen
randomly between 1 and 2, modeling the cost of recruiting
the endpoints to participate in active measurements. Note that
these costs are relative to the attack/defense budget and are
thus unitless. A link is considered “normal” if its delay is
within 150 ms, i.e., τ = 150. The maximum delay of a link
is set to 2000 ms, i.e., τmax = 2000.

4) Benchmarks for Attack: We compare the proposed attack
design algorithms, Greedy GALS (Algorithm 1) and LP-R
(Algorithm 2), with three heuristics and an optimal solution:

i) “Random selection” (‘random’): This algorithm randomly
selects compromised links within the given budget.

ii) “Top traversal” (‘top traversal’): Based on the intuition
that compromising the most traversed links will give the
attacker the most control, this algorithm sorts the links
by their traversal numbers in descending order, and then
selects compromised links in this order within the budget.

iii) “LP relaxation with Randomized Rounding” (‘LP-
RR’): To benchmark the proposed rounding scheme in
Algorithm 2, we evaluate a randomized rounding scheme,
where the fractional solution (α′j)lj∈L to the LP relax-
ation of (14) is used as probabilities for selecting links.

iv) “ILP” (‘ILP’): This solution directly solves the ILP (14)
by the Gurobi optimizer, which performs an exhaustive
search in the worst case.

Under each selection of the compromised links Lm, we solve
the optimization (1) in x̂ to compute the total performance
degradation under the optimal manipulations, measured by
the total delay injected by the attacker over all the paths in
Pd. Because of this, all these benchmarks can be considered
instances of an improved version of the “maximum-damage
scapegoating attack” in [8], [35] that aims at injecting the
maximum degradation on the paths in Pd, with Lm chosen by
the above methods.

5) Benchmarks for Defense: We compare the proposed
defense design algorithm, Greedy Defense (Algorithm 3), with
a baseline and an “optimal” solution:

i) “Random selection” (‘random’): This algorithm randomly
selects additional paths (besides Pd) to monitor within the
defense budget.

ii) “Maximum Coverage selection” (‘max cover’): According
to the intuition that monitoring the paths traversing more
links used by Pd will provide more protection, this algo-
rithm selects the path pi that maximizes |cover(pi)|/cdi in
each iteration until exhausting the defense budget, where
cover(pi) := {lj ∈ pi ∩ (∪p∈Pd

p) \ (∪p∈Ps
p)} and Ps is

the set of paths that are already selected.
iii) MIIQP: This algorithm uses the Gurobi optimizer to

directly solve (22), which minimizes an upper bound on
the maximum damage given by the LP relaxation of (14).

Under each design of the measurement paths P , we solve
the attack optimization (1) optimally (by first computing the
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TABLE IV
PARAMETERS FOR ATTACKS UNDER VARIED ka AND UNLIMITED kd

Network #terminals |Pd| |P |
Bics 15 10 105

BTN 15 10 105

Cogent 15 10 105

Colt 20 10 190

AS 8717 20 10 190

AS 20965 20 10 190
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Fig. 3. Comparison of attack strategies when attack budget ka varies.

optimal Lm by solving the ILP (14) and then solving the
remaining LP in x̂) to compute the maximum performance
degradation under P . Due to the high complexity of the
defense optimization (which is not even in NP), the optimal
defense strategy cannot be computed in reasonable time even
for small problem instances, and is hence skipped.

B. Experiment Results on Attack

To evaluate the potential damage of DGoS attack, we
evaluate the average performance degradation over the paths
in Pd (plus/minus one standard deviation) under each attack
design, computed over 20 Monte Carlo runs.

First, we increase the attack budget ka under the parameters
in Table IV to evaluate attackers of growing strength. To
understand the fundamental impact of DGoS attack, we set
P = Pc in this experiment, which corresponds to the case of
unbudgeted defense according to Lemma IV.1. Fig. 3 shows
that the proposed attack design algorithm for the budgeted case
(LP-R) achieves much bigger damage than the benchmarks for
a wide range of ka, whereas the proposed algorithm for the
unbudgeted case (Greedy GALS) is only effective when ka

is large. Moreover, the attacker can cause significant damage
by compromising only a few links (e.g., causing > 1 second
of delay per path in AS8717 when compromising an average
of 2 links at attack budget 2). Note that LP-R is sometimes
non-monotone in ka (e.g., for Colt), because it is generally
suboptimal and hence may not utilize the budget optimally

TABLE V
PARAMETERS FOR ATTACKS UNDER VARIED |P |

Network #terminals attack budget |Pd|
Bics 15 2 10

BTN 15 2 10

Cogent 15 3 10

Colt 20 3 10

AS 8717 20 3 10

AS 20965 20 3 10
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Fig. 4. Comparison of attack strategies when #measurement paths
|P | varies.

(recall that designing the optimal attack strategy is NP-hard
according to Theorem III.5).

Next, we fix ka and |Pd| but increase |P | (and hence the
number of active measurement paths in P \ Pd) under the
parameters in Table V to evaluate the impact of monitoring
more paths. To understand the protection provided by simply
monitoring more paths (in addition to Pd), we randomly select
the active measurement paths from Pc \Pd in this experiment;
the results under more sophisticated measurement design will
be shown in Section V-C. Fig. 4 shows that the damage
achieved by all attack strategies decreases with the increase of
|P |, verifying the intuition that monitoring more paths makes
network tomography more effective at thwarting attacks.

C. Experiment Results on Defense

To evaluate the protection provided by carefully design-
ing the (active) measurement paths, we evaluate the average
performance degradation over Pd (plus/minus one standard
deviation) under each design of P and the corresponding
optimal attack strategy, computed over 20 Monte Carlo runs.

First, we fix the attack budget ka as in Table V and
gradually increase the defense budget kd. Fig. 5 confirms that
monitoring a larger set of paths by active measurements helps
to protect data flows from stealthy DGoS attacks regardless of
how the active measurement paths are selected. However, by
carefully selecting these paths, we can achieve the same level
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Fig. 5. Comparison of defense strategies when defense budget varies.

TABLE VI
PARAMETERS FOR ATTACKS UNDER VARIED ka AND FIXED kd

Network #terminals |Pd| |Pc| kd

Bics 15 10 105 5

BTN 15 10 105 5

Cogent 15 10 105 10

Colt 20 10 190 10

AS 8717 20 10 190 15

AS 20965 20 10 190 15

of protection at a fraction of cost. For example, the proposed
solution (Greedy Defense) achieves almost the same protection
as monitoring all the 95-180 candidate active measurement
paths by only monitoring 10 paths. Moreover, Greedy Defense
performs as well as MIIQP while being more computationally
efficient (MIIQP is skipped for AS 8717 due to its high
complexity, which is exponential in the worst case).

Next, we vary the attack budget ka while fixing the defense
budget kd as in Table VI. Fig. 6 confirms the efficacy of
Greedy Defense when compared to randomly selecting the
active measurement paths (random) and selecting the active
measurement paths to cover the most links carrying data flows
(max cover), which are in turn better than not performing
active measurements at all as shown in Fig. 5. In particular, the
intuitive heuristic of max cover performs as poorly as random
selection, as it fails to model a strategic attacker as done by
Greedy Defense. The cost of using Greedy Defense is its
computational complexity, e.g., at kd = 10, running this algo-
rithm on average takes 56.85 seconds for BTN, 61.15 seconds
for Bics, 1315.7 seconds for Cogent, 808.6 seconds for Colt,
1067.35 seconds for AS8717, 1310.5 seconds for AS20965.
Nevertheless, we argue that this cost can be worthwhile in
practice as the computation will occur offline. Meanwhile,
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Fig. 6. Comparison of defense strategies when attack budget varies.

once the attacker has an unlimited budget, defenses based on
designing the measurement paths are no longer effective as
the attacker can compromise every path, and other defenses
are needed.

Summary: The above results provide a number of insights
about DGoS attacks and their defenses: (i) it is important
to model intelligent attack strategies as they can achieve
substantially more damage than simplistic strategies; (ii) while
monitoring more paths always helps the defender, carefully
selecting the measurement paths can achieve the same protec-
tion at a much lower cost; (iii) even under optimized design
of measurement paths, the attacker can still cause significant
damage by manipulating internal network elements, signaling
the importance of securing network elements as a first line of
defense. We note, however, that the third conclusion is drawn
under the limitation that measurement paths must start/end at
terminals and follow the shortest paths, and it remains open
how much protection can be achieved by deploying dedicated
monitors and/or controlling the routing of probes, which has
been used to ensure identifiability for network tomography in
the benign setting [3], [4], [5], [32], [33], [6], [7]. We leave
further investigation of this idea to future work.

VI. CONCLUSION

By formulating and analyzing a generalized DGoS attack,
we quantified the maximum damage that an attacker inside
the network can inflict on end-to-end communications with-
out exposing the compromised links to network tomography,
while modeling both passive and active measurements. By
establishing optimality conditions, we connected the optimal
attack design problem to well-known optimization problems
and developed efficient algorithms. We further developed a
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polynomial-time defense algorithm by formulating and solving
a Stackelberg game to optimize the measurement paths in
the presence of a limited budget and an intelligent attacker.
Our evaluations on real network topologies highlighted the
importance of modeling intelligent attackers, and validated
the efficacy of the proposed defense. Meanwhile, our results
also showed that monitoring the default routing paths between
communicating terminals may not be sufficient, indicating the
need for the development of further defenses.
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