
Queuing Network Topology Inference Using
Passive Measurements

Yilei Lin, Ting He, and Guodong Pang
Pennsylvania State University, University Park, PA 16802, USA. Email: {yjl5282,tzh58,gup3}@psu.edu

Abstract—In this work, we revisit a classic problem of infer-
ring a tree topology from end-to-end measurements originated by
a single source, with two critical differences: (i) instead of relying
on measurements with specific correlation across paths that often
require active probing, we do not rely on any correlation and
can thus utilize passive measurements; (ii) instead of inferring a
logical topology that ignores certain nodes, we want to recover
the physical topology. Our key idea is to utilize the detailed
queuing dynamics inside the network to estimate the number
of queues and a certain parameter (residual capacity) of each
queue on each measurement path, and then use the estimated
parameters as fingerprints to detect shared queues and infer
the topology. To this end, we develop a Laplace-transform-based
estimator to extract the parameters of a tandem of queues from
end-to-end delays, and efficient algorithms to identify the pa-
rameters associated with the same queue and infer the topology
accordingly. The inferred topology is guaranteed to converge to
the ground truth, up to a permutation of queues traversed by
the same paths, as the number of measurements increases. Our
evaluations validate the proposed solutions against benchmarks
and identify potential directions for further improvements.

Index Terms—Network topology inference, passive measure-
ment, queuing network, phase-type distribution.

I. INTRODUCTION

Understanding the internal structure of a network, i.e., the
network topology, is critical for a variety of tasks such as rout-
ing, content distribution, service placement, load balancing,
and overlay construction. While network topology is tradition-
ally maintained by the network administrator (e.g., via the help
of local agents running Simple Network Management Protocol
or OpenFlow) and discoverable by traceroute, obtaining this
information for multi-domain networks such as the Internet is
much more challenging due to the lack of internal support.

In these cases, network tomography provides a promising
approach that infers the network topology from end-to-end
measurements. Since introduction in the 1990s [1], a num-
ber of algorithms have been developed based on this idea,
which use multicast measurements [2]–[4], their unicast-based
approximations [5], [6], or network coding [7] to infer the
routing tree rooted at each probing source, and further stitch
the trees for multiple sources to form a general topology [8].
A common foundation of these works is a probing scheme
that generates specifically correlated measurements across
different paths, so that the correlation (caused by shared
links/nodes) can be used to estimate the “lengths” of the
shared portions of these paths. These shared path lengths can

This research was partly supported by the National Science Foundation
under awards CNS-1946022 and CCF-1813219.

then be used to reveal the branching/joining points between
different paths and thus the network topology.

Despite the extensive studies, existing topology inference
algorithms have the limitations that (i) they mostly rely on
active probes due to the specific type of correlation required
by each algorithm, which increases the network load, and (ii)
they can only infer a logical topology that ignores the degree-
2 nodes between branching/joining points. In this work, we
tackle these limitations by developing a topology inference
algorithm that can utilize passive measurements with arbitrary
(or no) correlation across paths, and recover the physical
topology with possible degree-2 nodes. This is achieved by
a fundamentally different approach that utilizes the detailed
queuing dynamics inside the network. As a first step, we focus
on inferring the tree topology rooted at a single source, and
leave the extension to multi-source topologies to future work.

A. Related Work

Network topology inference: Our work belongs to
a branch of network tomography aiming at inferring routing
topologies using end-to-end measurements. The technique
was originated based on the observation that correlated
losses observed at multicast receivers can be used to infer the
multicast tree [1], and was then extended to utilize a variety
of multicast measurements, including losses [2], delays [3]
and a combination of both [4]. As multicast is not widely
supported, solutions based on unicast were proposed [5], [6].
These solutions, however, were based on specially-designed
probing schemes such as stripes of back-to-back unicast
packets [5] or “sandwiches” of small and large packets [6],
both inducing correlated measurements at different receivers
that can reveal performance metrics on the shared portions of
end-to-end paths. While the above works aimed at inferring a
tree topology rooted at a single source, later works (e.g., [8]
and references therein) addressed more general topologies
by merging trees rooted at multiple sources. However, these
works are still based on multicast or its approximations,
which requires active probing. Another line of works relies
on network coding (e.g., [9] and references therein). These
solutions rely on internal nodes that perform network coding,
thus not applicable in current packet-switched networks.

In contrast, we take a fundamentally different approach of
fingerprinting queues at internal nodes based on (possibly)
uncorrelated end-to-end performance measurements, thus able
to leverage passive measurements from existing data packets.

Queuing parameter inference: Our approach is based on
the inference of queuing parameters from end-to-end measure-

ments. To this end, a variety of parameters have been tackled
in the context of communication networks. For example, it
was shown in [10] that the difference between the delays mea-
sured when the buffer is full or empty can be used to estimate
the buffer size at the bottleneck linkIn [11], packet arrival
times and flow identifiers were used to detect bottleneck
links shared between flows and estimate their bandwidths.
In [12], periodic probes were used to detect the “dominant
congested link” on a path and estimate the maximum
queuing delay at this link. These works only focused on the
bottleneck links, and while useful for performance diagnosis,
did not provide sufficient information for topology inference.

In the context of generic queuing systems, the inference
of queuing parameters has been posed as inverse problems,
with several inversion techniques developed to infer input
and service time characteristics from delay/loss measurements
for a single queue [13]. However, when the system becomes
more complex (e.g., a tandem of queues), inversion techniques
became unstable [13], and solutions fell back to standard
algorithms based on maximum likelihood estimation [13],
[14]. We refer to [15] for a comprehensive bibliography in
this space. To our knowledge, all the existing works assumed
the queuing network topology to be known.

B. Summary of Contributions

We aim at inferring the topology of a queuing network
modeling the connections from a given source to a given set
of destinations, based on possibly uncorrelated measurements
of the end-to-end delays. Our contributions are:

1) We propose a novel approach for topology inference that
can utilize passive measurements and potentially recover the
physical topology (of the queuing network) by exploiting the
detailed queuing dynamics inside the network.

2) We develop a Laplace-transform-based estimator that can
estimate the length and the residual capacities of a tandem
of queues from end-to-end delays, which outperforms the
maximum likelihood estimator (MLE) at finite sample sizes
and is asymptotically consistent.

3) Based on the estimated queue parameters (i.e., residual
capacities), we develop computationally efficient algorithms to
identify the parameters associated with the same queue, and
then construct a tree topology accordingly. The constructed
topology is guaranteed to be identical to the ground truth, up to
a permutation of queues traversed by the same set of measure-
ment paths, if the parameter estimation is sufficiently accurate.

4) Our evaluations based on a real topology show that: (i)
the proposed estimator outperforms MLE in both efficiency
and accuracy in a wide range of settings, and (ii) for small
topologies, the proposed topology inference algorithm can
even outperform state-of-the-art solutions based on active
probing due to its capability of discovering degree-2 nodes.
Meanwhile, we find it difficult to accurately infer large topolo-
gies from uncorrelated unicast measurements, and identify
potential directions for further improvements.

Roadmap. Section II formulates our problem, Section III
addresses parameter estimation for a tandem of queues, Sec-

q1

q2 q3

q4

(𝑑1)
q5

(𝑑2)
q6

(𝑑3)

queuing network topology

𝑙1

𝑙2 𝑙3

𝑠

𝑑′1 𝑑′2 𝑑′3
routing topology ’

𝑙4 𝑙5 𝑙6

Fig. 1. Queuing network model.

tion IV addresses topology inference based on the estimated
parameters, Section V evaluates the performance of the pro-
posed algorithms, and Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

Given the routing tree T ′ connecting a given source s
to a given set of destinations {d′1, . . . , d′N}, we model this
topology by a queuing network as shown in Fig. 1, where
each queue qi models the outgoing interface of a link li ∈ T ′.
This model is motivated by the fact that queuing in packet-
switched networks typically occurs at the outgoing interfaces.
It is easy to see that the resulting queuing network has the
topology of a rooted tree, denoted by T , where each vertex
represents a queue that corresponds to a link in the original
routing topology. One can easily obtain the original topology
from T . Let di ∈ T (i = 1, . . . , N) denote the leaf modeling
the access link for destination d′i, and pi denote the path from
the root of T to di.

We model each qi as an M/M/1 queue, where the sojourn
time models the delay imposed by link li on a packet
traversing li. Specifically, let λi denote the unknown load on
link li and µi denote the unknown capacity of this link, both
measured in packets per second. We assume that µi > λi,
which guarantees queue stability. Then it is well-known [16]
that the sojourn time Ti of qi in the steady state is exponen-
tially distributed with parameter δi := µi − λi that represents
the residual capacity, i.e., the PDF of Ti is w(ti) = δie

−δiti

(ti > 0). Moreover, we assume that the sojourn times of a
given packet at different queues are independent of each other
in the steady state, and hence the end-to-end delay on path
pj follows the hypoexponential distribution with parameters
(δi)qi∈pj , where “qi ∈ pj” means for each queue qi on path pj .

Remark: Our assumptions are automatically satisfied if
T is a Jackson network with M/M/1 queues, which is a
commonly-used model in queuing theory. We refer to [13,
Section 6.2] for a detailed discussion on the realism of this
model. We further note that we do not assume the same packet
to have independent service times at different queues (these
times will be correlated); what we assume is that different
queues receive largely disjoint cross-traffic, and thus a mea-
surement packet will incur largely independent waiting times
at different queues and hence largely independent sojourn
times (assumed to be dominated by the waiting times).

2

δ1

δ2 (or δ4) δ3

δ5 δ6

𝑇

δ1

δ2 δ3

δ4 δ5 δ6

p1 p2

p3
p1: δ1,δ2,δ4

p2: δ1, δ3, δ5

p3: δ1, δ3, δ6

δ4 (or δ2)
(any order)

(a) (b) (c)

Fig. 2. Motivating example.
B. Objective

Given i.i.d. measurements xj := (xj,h)nh=1 of the
end-to-end delay on each path pj (xj,h: the h-th measurement
on path pj), we want to infer the queuing network topology
T . These measurements can be obtained from active probes,
passive monitoring of data packets, or a combination of both.
In contrast to the previous works [5], [6], we do not rely
on specific correlation of measurements across paths, and
thus can utilize passive measurements that can be arbitrarily
correlated (possibly uncorrelated) across paths. The temporal
independence assumption for measurements on the same path
can be justified by ensuring sufficient spacing between mea-
surements as in [6]. For the problem to be well-defined, we
assume that the link loads remain fixed during measurement,
which can be achieved by collecting the measurements during
off-peak hours so that there is minimal fluctuation in traffic.

C. Motivating Example

We illustrate why the problem is solvable by a simple
example. As illustrated in Fig. 2 (a), T models the connection
from a source to three destinations via paths p1, p2, and
p3. The end-to-end delay on pj (j = 1, . . . , 3) follows a
hypoexponential distribution with the parameters listed in
Fig. 2 (b), which can be accurately estimated after collecting
sufficiently many measurements. Under the assumption that
different queues have different parameters, we can infer that
there is a queue shared by all three paths with parameter δ1
and another queue shared by paths p2 and p3 with parameter
δ3. Due to the tree structure, we can then infer the topology
as in Fig. 2 (c), where the only uncertainty is in the order of
the queues with parameters δ2 and δ4 on p1. Since this order
does not affect the end-to-end delay distribution on any path,
Fig. 2 (c) is the most accurate estimate that can be obtained.

Following the idea in this example, we will develop our so-
lution in two steps: (1) estimating the δ-parameters (i.e., resid-
ual capacities) for a tandem of queues from their end-to-end
delays, and then (2) inferring the queuing network topology
by merging the queues with sufficiently similar δ-parameters.

III. PARAMETER ESTIMATION FOR TANDEM QUEUES

We first focus on estimating the δ-parameters for a tandem
of queues modeling a given path. For simplicity, we will omit
the path index and simply denote the delay measurements
on this path by x := (xh)nh=1 and the queue parameters by
δ := (δ1, . . . , δK), where K is an upper bound on the number
of queues per path (i.e., the maximum hop count between the
source and the destinations in the routing topology). As the
actual number of queues on a given path is unknown, we use

this upper bound to define the number of unknown parameters.
As the order of queues does not affect the end-to-end delay
distribution and hence cannot be identified from the delay
measurements from a single path (later in Section IV we will
show how to identify their order up to segments in the tree),
we assume δ1 ≤ · · · ≤ δK when comparing the estimated
and the true parameters. If the actual number of queues is K∗

(K∗ < K), then the last K −K∗ queues are virtual queues
with no additional delay, i.e., δK∗+1 = · · · = δK = ∞. Our
estimation algorithm (Algorithm 1) will also estimate K∗.

A. Maximum Likelihood Estimation (MLE)

Assuming that K = K∗, [13] proposed to apply the MLE
to this problem. More generally, MLE is considered the state-
of-the-art estimator for phase-type distributions [17], which
includes the hypoexponential distribution as a special case.
Specifically, assuming that δi 6= δj for any i 6= j, we can
express the PDF of the end-to-end delay as:

g(x; δ) =

K∑
i=1

δie
−xδi

 K∏
j=1,j 6=i

δj
δj − δi

 , (1)

and the MLE aims at finding the value of δ that maximizes
the log-likelihood

∑n
h=1 log g(xh; δ). If solved exactly, the

MLE has a desirable property that it is asymptotically efficient
under regularity conditions1, i.e., as the number of measure-
ments increases, it converges to the true parameter at a rate
approximating the Cramér-Rao bound [18].

However, as the log-likelihood function is non-concave,
computing the MLE is challenging. To address this
challenge, various algorithms have been proposed to
compute an approximation to MLE [17]. In particular,
the Expectation-Maximization (EM) algorithm is guaranteed
to converge to a local maximum and was adopted
to solve this problem in [13]. However, we find EM
to be extremely slow in our case due to the calculation
of numerical integration, which combined with its known
slow convergence [14] makes it impractical for our problem.

B. Estimation based on Laplace Transform

Motivated by the need to improve the estimation speed
and accuracy, we exploit estimators based on the Laplace
transform. Defined as IE[e−sX] for a random variable X ,
the Laplace transform uniquely determines the distribution
of X (except on a set of Lebesgue measure zero), and
can be numerically inverted to compute the CDF/PDF of
the distribution [19]. While the transform has been used to
estimate PDF/CDF from data [20], [21], to our knowledge,
we are the first to apply it to parameter estimation.

The Laplace transform appears promising for our prob-
lem due to its property that if X is a summation of in-
dependent random variables X1, . . . , XK , then IE[e−sX] =∏K
i=1 IE[e−sXi], thus providing a simple target function for

1These conditions are that (i) the log-likelihood function is twice differ-
entiable, and (ii) the Fisher Information Matrix is non-zero, both satisfied in
our case.

3

fitting. Specifically, since the Laplace transform of an ex-
ponential random variable with parameter δi is δi/(δi + s)
(s > −δi), the Laplace transform of the end-to-end delay is

L(s; δ) :=

K∏
i=1

δi
δi + s

, s > − min
i=1,...,K

δi. (2)

Our idea is to estimate the Laplace transform at a predeter-
mined set of values for s, and find the parameter δ yielding
the best fit.

Estimator: By definition, the empirical Laplace transform

L̂(s; x) :=
1

n

n∑
h=1

e−sxh (3)

gives an unbiased estimate of L(s; δ). Given the empirical
Laplace transform, we propose to estimate δ by solving

min
∑
s∈S
|L(s; δ)− L̂(s; x)| (4a)

s.t. 0 < δ1 ≤ · · · ≤ δK , (4b)
i.e., fitting the empirical Laplace transform at s ∈ S by
minimizing the absolute error, where S is a design parameter.

We note that there are other ways to use the Laplace
transform for estimating δ. For example, we can rewrite the
Laplace transform (2) as

L(s; δ) =
a0

a0 + a1s+ · · · aK−1sK−1 + sK
, (5)

where the coefficients are related to δ by

aj :=
∑

A⊆{1,...,K},|A|=j

∏
i∈{1,...,K}\A

δi, j = 0, . . . ,K − 1. (6)

Then we can estimate the coefficients a0, . . . , aK−1 from
the empirical moments or the empirical Laplace transform as
in [20], and solve the system of equations (6) for δ. We can
also use other error measures in (4a) (e.g., squared error).
However, we find that the proposed estimator achieves the
best performance (see Fig. 7–8).

Performance: The proposed estimator is consistent under
sufficiently large |S| in the following sense.

Theorem III.1. As n→∞, (4) has a unique optimal solution
that equals the ground truth if |S| > K.

Proof. As n → ∞, L̂(s; x) will converge almost surely to
L(s; δ∗), where δ∗ denotes the true parameter. Suppose that
∃δ̂ 6= δ∗ that is optimal for (4) at convergence. It must satisfy∑

s∈S
|L(s; δ̂)− L(s; δ∗)| ≤ 0, (7)

and thus
K∏
i=1

δ̂i

δ̂i + s
−

K∏
i=1

δ∗i
δ∗i + s

= 0, ∀s ∈ S. (8)

The left-hand side of (8) can be converted to an order-K
polynomial of s, which has at most K distinct solutions.
This contradicts with the assumption of |S| > K,
thus completing the proof.

At finite sample sizes, we find it easier to find a good
solution based on the proposed objective in (4a) than the
MLE objective (see Fig. 7–8). Intuitively, this is because

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3

-4.8

-4.7

-4.6

-4.5

-4.4

-4.3

-4.2

-4.1

-4

-3.9

-3.8

lo
g

-l
ik

e
lih

o
o

d

105

(a) MLE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
a

p
la

c
e

 f
it
ti
n

g
 e

rr
o

r

absolute error

squared error

(b) Laplace fitting
Fig. 3. Comparison of objective functions (true parameter δ∗ =
(0.1, 0.15, 0.2,∞), n = 105, S = {0, 0.1, 0.2, . . . , 1}, δi = δ∗i for i 6= 3).

our objective function has a larger gradient norm around the
optimal value, as illustrated in Fig. 3, and hence optimiza-
tion algorithms are less likely to stop at suboptimal values.
Fig. 3 (b) further justifies our choice of the absolute error in
(4a) as opposed to the commonly-used squared error. Similar
observations have been obtained under other settings.

Design of S: Besides the condition in Theorem III.1, the
values in S also affect the accuracy of the proposed estimator
at finite samples sizes. Intuitively, S should contain a diverse
range of values to provide a good description of the Laplace
transform. It has been suggested in [20] that these values
should be evenly distributed. We also find that increasing the
density of points in S helps (see Fig. 6 (a)), at the cost of
increased complexity.

Algorithm: Although in theory virtual queues with δi =∞
can be used to accommodate overestimation of the number
of queues, in practice such overestimation tends to increase
the error in estimating δ as optimization algorithms used to
solve (4) will always give finite values. Therefore, we propose
to test the fitting error under various numbers of queues up
to K and select the estimate with the minimum fitting error,
as shown in Algorithm 1. Lines 6–7 are used to find a good
initial value of δ by iteratively optimizing one δi at a time,
while fixing the other δj for j 6= i. We find that optimization
based on this initialization outperforms optimization from an
arbitrary initial guess (see Fig. 6 (b)).

IV. QUEUING NETWORK TOPOLOGY INFERENCE

Based on the inferred δ-parameters from each tandem of
queues for which the end-to-end delays can be measured, i.e.,
from each path pi (i = 1, . . . , N), we are now ready to infer
the queuing network topology T . The key observation is that
if each queue has a distinct δ-parameter, which is likely to
be satisfied in production networks due to the unique mix of
cross-traffic on each link, then we can use this parameter as
a “fingerprint” of the queue to detect the queues shared by
different paths.

Specifically, given the inferred parameters δi := (δij)
ki
j=1

for path pi (i = 1, . . . , N), we view pi as a tandem of ki
queues, denoted by qi := (qij)

ki
j=1. We will develop efficient

algorithms to merge these N tandems of queues into a tree-
shaped queuing network in two steps: (1) inferring which input
queues represent the same queue in the underlying queuing
network, and (2) inferring the queuing network topology
accordingly. We now tackle these two steps separately.

4

Algorithm 1: Laplace-based Tandem Queue Inference
input : end-to-end delays x := (xh)nh=1, maximum

number of queues K, input parameters for
Laplace transform S

output: estimated queue parameters δ̂
1 initialization: emin ←∞, δ̂ ← ∅;
2 for s ∈ S do

3 L̂(s;x)← 1

n

∑n
h=1 e

−sxh ;

4 for k = 1 to K do
5 let δ(0) be an arbitrary initial guess with length k;
6 for i = 1 to k do
7 δ

(0)
i ← argminδi

∑
s∈S |L(s; δ)− L̂(s;x)|,

where δj = δ
(0)
j for all j 6= i;

8 δ(1) ← argminδ

∑
s∈S |L(s; δ)− L̂(s;x)| with

initial value δ = δ(0);
9 if e :=

∑
s∈S |L(s; δ(1))− L̂(s;x)| < emin then

10 emin ← e and δ̂ ← δ(1);

...

q q’

𝑑𝑖 𝑖∈𝐴 𝑑𝑖 𝑖∈𝐴′

Fig. 4. A queue q of category A and a queue q′ of category A′ cannot
coexist in T if A ∩A′ 6= ∅, A 6⊆ A′, and A′ 6⊆ A.

A. Inferring Associated Queues

We define a set of input queues, each modeling a link tra-
versed by a different path, as a set of associated queues, if they
model the same link in the routing topology (and hence cor-
respond to the same queue in the queuing network T). Algo-
rithm 2 shows our algorithm to identify the sets of associated
queues based on similarities of the estimated δ-parameters.

1) Algorithm: Specifically, define
D{qi1j1 ,...,qikjk

} := max{δi1j1 , . . . , δikjk}
−min{δi1j1 , . . . , δikjk} (9)

as the error in associating the input queues {qi1j1 , . . . , qikjk}
to the same queue in T . We see that if the maximum
estimation error for any δij is ∆/2, then a set of input queues
{qi1j1 , . . . , qikjk} may represent the same queue in T only if
D{δi1j1

,...,δikjk
} ≤ ∆. Hereafter, we refer to a set s of input

queues (each on a different path) satisfying Ds ≤ ∆ as a
candidate set, meaning a candidate set of associated queues,
where ∆ is a design parameter that controls the tradeoff
between detecting truly associated queues and not detecting
non-associated queues as associated queues.

However, the feasibility of different candidate sets (even if
they are disjoint) cannot be determined independently due to
the constraint of tree topology. To see this, we define the cate-
gory of a set of input queues s := {qi1j1 , . . . , qikjk} as the set
of indices of the paths traversing the queues in s, denoted by

c(s) := {i1, . . . , ik}. (10)

We will also refer to the indices of the paths traversing a
queue q in T as the category of q. Clearly, if the queues in s
represent the same queue q in T , then s and q have the same
category. For example, the inference results in Fig. 2 (b)
suggest that there is a queue with parameter δ1 that has
category {1, 2, 3}. The problem is that if we associate a set
of input queues of category A ⊆ {1, . . . , N} with the same
queue q in T , then q will reside on the tree branch containing
“destinations” {di}i∈A (recall that di is the queue modeling
the access link of destination d′i), and thus there cannot
be another queue q′ of category A′ for any A′ satisfying

A′ ∩A 6= ∅, A′ 6⊆ A, and A 6⊆ A′, (11)
as illustrated in Fig. 4. We say that two candidate sets s
and s′ conflict with each other if c(s) and c(s′) satisfy (11).

To avoid such conflict, our idea is to iteratively select
candidate sets via a greedy procedure, where each iteration
selects the candidate set not conflicting with the existing selec-
tions that has the minimum error defined as in (9). However,
a straightforward implementation of this idea will incur an
exponential complexity as there are O(KN) candidate sets.

Algorithm 2 avoids the exponential complexity by only
searching among the candidate sets that may achieve the min-
imum error. Specifically, let Q denote the currently selected
candidate sets and Q̃ the candidate sets that will be searched
in the next iteration. For each s ∈ Q̃, let Fs ∈ {0, 1} indicate
whether the candidate set s is feasible, i.e., not conflicting
with any s′ ∈ Q. Starting by selecting all the singletons {qij}
into Q as D{qij} = 0 (lines 2–3), we see that: (i) for the first
iteration, the minimum error among the candidate sets outside
Q must be achieved at a set of two queues; (ii) for each of the
subsequent iterations, the minimum error among the feasible
candidate sets outside Q must be achieved at the union of two
sets in Q. This allows us to initialize (lines 4–8) and update
(lines 13–29) Q̃ and its corresponding properties only for the
candidate sets that may be selected in the next iteration. The
algorithm continues until all the candidate sets not conflicting
with the already-selected sets have been considered (line 9).

2) Complexity: Recall that K is the maximum number
of queues per path. By design, |Q| starts at O(KN)
and reduces by one in each iteration (as two sets in Q
will be replaced by their union). Moreover, Q̃ contains the
union of each pair of sets in Q, and hence |Q̃| = O(K2N2).
This implies a space complexity of O(K2N3), dominated
by the space for storing Q̃, as the cardinality of each
set in Q̃ is at most N . For time complexity, the initialization
(lines 2–8) takes O(K2N2), each while loop (lines 10–29)
takes O(K3N4), dominated by the update of (Fs)s∈Q̃
in lines 14–19 (as the conflict between two sets can be
checked in O(N)), and the while loop is repeated O(KN)
times (each reducing |Q| by one). The total time complexity
is thus O(K4N5). Note that this is only the worst-case
complexity when all the considered sets are candidate sets;
in practice, the complexity will be lower with a smaller ∆.

3) Correctness: We show that the inference by Algorithm 2
will be accurate if the input parameters are sufficiently accu-
rate. For each queue e ∈ T , let δ∗e denote its true parameter,

5

Algorithm 2: Inference of Associated Queues
input : inferred parameters δδδ1, · · · , δδδN for all the

paths (δi = (δij)
ki
j=1); threshold ∆

output: Collection Q of sets of queues, where each
s ∈ Q is a set of input queues inferred to be
associated with the same queue in T

1 Q← ∅; Q̃← ∅;
2 for i = 1, . . . , N do
3 Q← Q ∪ {{qi1}, . . . , {qiki}};
4 for {qi1j1}, {qi2j2} ∈ Q with i1 6= i2 do
5 if |δi1j1 − δi2j2 | ≤ ∆ then
6 Q̃← Q̃ ∪ {{qi1j1 , qi2j2}};
7 D{qi1j1

,qi2j2
} ← |δi1j1 − δi2j2 |;

8 F{qi1j1
,qi2j2

} ← 1;
9 while ∃s ∈ Q̃ with Fs = 1 do

10 s∗ ← argmins∈Q̃,Fs=1Ds;
11 Q← Q ∪ {s∗};
12 Q← Q \ {s ∈ Q : s ⊂ s∗};
13 Q̃← Q̃ \ {s ∈ Q̃ : s ∩ s∗ 6= ∅};
14 for s′ ∈ Q̃ do
15 Fs′ ← 1;
16 for s ∈ Q do
17 if s′ conflicts with s then
18 Fs′ ← 0;
19 break;
20 for s ∈ Q such that c(s) ∩ c(s∗) = ∅ do
21 d← maxqij∈s∪s∗ δij −minqij∈s∪s∗ δij ;
22 if d ≤ ∆ then
23 Q̃← Q̃ ∪ {s ∪ s∗};
24 Ds∪s∗ ← d;
25 Fs∪s∗ ← 1;
26 for s′ ∈ Q do
27 if s ∪ s∗ conflicts with s′ then
28 Fs∪s∗ ← 0;
29 break;

and se the true set of all the input queues associated with e.

Theorem IV.1. Let ∆∗ := mine,e′∈T ,e6=e′ |δ∗e − δ∗e′ |. Algo-
rithm 2 will output Q = {se}e∈T if every input parameter δij
is associated with some e ∈ T and |δij − δ∗e | ≤ 1

2∆ < 1
4∆∗.

Proof. As the estimation error for any δij is no more than
∆/2, we must have δij ∈ [δ∗e − ∆/2, δ∗e + ∆/2] for each
qij ∈ se. Thus, Dse ≤ ∆, making se and its subsets candidate
sets. Meanwhile, for any e′ ∈ T such that e′ 6= e, we will have
|δ∗e′−δ∗e | ≥ ∆∗ > 2∆. Hence, the estimated parameter δi′j′ of
any input queue associated with e′ must satisfy |δi′j′ − δ∗e | >
3∆/2, and thus |δi′j′ − δij | > ∆ for all qij ∈ se. This means
that a set of input queues s will be considered a candidate set
by Algorithm 2 if and only if s ⊆ se for some e ∈ T .

Moreover, we claim that the final output Q of Algorithm 2
must contain se for each e ∈ T . We prove this by a top-down
induction. First, the set se0 for e0 at the root of T will not
conflict with any other set and thus must be selected into Q.
Second, if for a given e ∈ T , se′ ∈ Q for each ancestor e′ of e,

then se will not conflict with any s ∈ Q (associated with some
e′′ ∈ T), since c(s) ⊇ c(se) if e′′ is an ancestor of e, c(s) ∩
c(se) = ∅ if e′′ is on a different branch from e, and c(s) ⊆
c(se) if e′′ is at or below e on the same branch, and thus se
must be selected into Q. The proof completes by noting that
no s ⊂ se for any e ∈ T will be in Q due to line 12.

B. Constructing Queuing Network Topology

The result of Algorithm 2 helps to infer the queuing
network T by revealing the set of queues and the position
of each queue. Specifically, if Algorithm 2 infers that a
set of input queues {qi1j1 , . . . , qikjk} correspond to the same
queue q in T , then q must have category {i1, . . . , ik}, and
hence reside on the tree branch containing “destinations”
{di1 , . . . , dik}. We now use this idea to construct the tree.

1) Algorithm: Algorithm 3 constructs the tree by going
through the sets of associated queues inferred by Algorithm 2
in the increasing order of cardinality (line 2), breaking ties
arbitrarily, and constructing a vertex to represent each set
(line 3). This results in a bottom-up approach that constructs
the tree from the leaves to the root. At any time, the set R
contains the top-most vertex in each constructed branch. After
constructing a new vertex vs, the algorithm will connect it
with each vertex vs′ ∈ R that is on the same branch as vs
(indicated by c(s′) ∩ c(s) 6= ∅) and update R (lines 4–8). If
Q does not contain any set of category {1, . . . , N}, then the
constructed topology will be a forest, in which case we merge
the roots to form a tree (line 10).

Algorithm 3: Topology Construction
input : inferred parameters δδδ1, · · · , δδδN , output Q of

Algorithm 2
output: inferred topology T̂

1 T̂ ← ∅; R← ∅;
2 for s ∈ Q in increasing order of |s| do
3 create a vertex vs in T̂ with parameter

δvs = mean({δij}qij∈s);
4 for vs′ ∈ R do
5 if c(s′) ∩ c(s) 6= ∅ then
6 create an edge (vs, vs′) in T̂ ;
7 R← R \ {vs′};
8 R← R ∪ {vs};
9 if |R| > 1 then

10 merge all the vertices in R;

2) Complexity: Recall from Section IV-A2 that |Q| =
O(KN). Moreover, |R| = O(N), as after constructing the
N leaves, each new vertex will replace at least one existing
vertex in R. This implies a space complexity of O(KN2),
dominated by the space for storing Q, and a time complexity
of O(KN3), dominated by line 5 (as there are O(KN) loops
in line 2, O(N) loops in line 4, and |c(s)| ≤ N for all s ∈ Q).

3) Correctness: We say that v is a branching point in
T if it is a vertex with at least two children. We say that
two vertices v1, v2 in T are on the same segment if they
are traversed by the same set of root-to-leaf paths. Based on

6

Algorithm 4: Queuing Network Topology Inference

input : paths {pi}Ni=1, #measurements per path n,
maximum #queues per path K, parameter for
Laplace transform S, threshold ∆

output: inferred topology T̂
1 for i = 1, . . . , N do
2 measure the delays xi := (xi,h)nh=1 of pi;
3 δ̂i ← parameters for pi inferred by Algorithm 1 or

MLE based on xi, K, and S (if applicable);
4 Q← sets of associated queues inferred by

Algorithm 2 based on (δ̂i)
N
i=1 and ∆;

5 T̂ ← topology constructed by Algorithm 3 based on
(δ̂i)

N
i=1 and Q;

these concepts, we will show that the output of Algorithm 3
is correct if its input Q is correct in the following sense.

Theorem IV.2. If Q = {se}e∈T , where se is the set of all
the input queues associated with queue e, then the topology
T̂ constructed by Algorithm 3 will be identical to T , except
that vertices on the same segment may be permuted.

Proof. For each vertex e in T , let ẽ denote the first branching
point at or below e, and vse the vertex in T̂ corresponding
to e. As each path traversing a vertex e′ in T must traverse
its parent e, we have c(se′) ⊆ c(se), and c(se′) ⊂ c(se)
if e is a branching point. Thus, when Algorithm 3 creates
a vertex vse based on se ∈ Q, the vertices {vse′}e′∈E′
for each child e′ of ẽ must have been created and satisfy
c(se′) ∩ c(se) 6= ∅, and every vse′′ for e′′ on a different
branch from e must have c(se′′)∩ c(se) = ∅. If se is the first
considered set of category c(se), then vse will be connected
to vse′ (∀e′ ∈ E′); otherwise, vse will be connected
to the top-most vertex vse0 with c(se0) = c(se) (since vse0
will have replaced {vse′}e′∈E′ in R), where e0 and e must
be on the same segment in T . Vertices on the same segment
will tie in line 2 and thus may be created in any order.

Remark: The order of vertices (each representing a queue)
on the same segment of T does not affect the end-to-end delay
distribution on any path and is hence not identifiable.

C. Summary of Solution

Algorithm 4 summarizes our overall solution. Theo-
rems III.1, IV.1, and IV.2 together guarantee that the inferred
topology will converge to the ground truth (up to a permu-
tation of queues on the same segment) as the number of
measurements per path increases.

V. PERFORMANCE EVALUATION

We evaluate the proposed algorithms against benchmarks
based on real Internet topologies.

A. Simulation Setup

1) Topology Generation: We generate the ground-truth tree
topologies based on a Rocketfuel Autonomous System (AS)
topology [22], which represents IP-level connections between

the routers in AS6461 of Abovenet, containing 182 nodes and
294 links. Given a maximum path length (measured in #nodes)
of K, we start from a randomly selected high-degree node s′

(with degree > 6) as the “source” and perform a breadth first
search (BFS) to obtain a tree of height K. We then randomly
pick N of the leaves of this tree as destinations, forming a
subtree with N leaves, which is used as the ground truth T
for topology inference.

The above topology construction guarantees that the num-
ber of nodes (each representing a queue) on each root-to-leaf
path is bounded by K. We randomly assign each node qi a pa-
rameter δi ∈ (0, 2), while making sure that |δi−δj | ≥ ∆∗ for
i 6= j, where ∆∗ denotes the minimum (possible) difference
between the parameters of different queues (∆∗ = 0 means
they can be arbitrarily close).

2) Benchmarks: For estimating the δ-parameters from the
end-to-end delays on each path, we compare the proposed
estimator (Algorithm 1) with the MLE (solved by the Nelder-
Mead simplex method [23]), and other Laplace-based estima-
tors discussed in Section III-B, including the two methods
proposed by Harris et al. [20] (‘Harris 1’, ‘Harris 2’), and a
variation of the proposed estimator that replaces the absolute
error (4a) by the squared error (‘squared’).

For topology inference, existing solutions relied
on correlated measurements provided by multicast or its
approximations (see Section I-A), and are thus not applicable
to our measurements. Nevertheless, as these solutions
aim at inferring the multicast tree, which is a logical
topology obtained by merging nodes on the same segment
(e.g., Fig. 5 (c)), we will compare with the accuracy of
approximating the ground-truth physical topology by the cor-
responding multicast tree, which can be estimated by Rooted
Neighbor Joining (RNJ) [5] from sufficiently many multicast
measurements. The multicast tree represents the asymptotic
accuracy of existing solutions that employ active probing,
and thus should be treated as a “performance upper bound”.

3) Metrics: We evaluate the accuracy of parameter esti-
mation by the relative error, defined as ‖δ̂ − δ∗‖1/‖δ∗‖1,
where δ̂ is the estimate and δ∗ the ground truth. If their
dimensions dim(δ̂) and dim(δ∗) are different, we fill δ̂ with
the maximum value if dim(δ̂) < dim(δ∗), and discard the
largest dim(δ̂)−dim(δ∗) elements of δ̂ if dim(δ̂) > dim(δ∗).

We evaluate the accuracy of topology inference by a version
of graph edit distance [24] that allows merging/splitting nodes.
Graph edit distance is a typical performance metric for topol-
ogy inference algorithms [25]. In our case, a common error is
duplicating the same node (i.e., queue) or incorrectly merging
different nodes due to errors in the estimated δ-parameters,
which is captured by this graph edit distance. As illustrated in
Fig. 5, the inferred topology (Fig. 5 (b)) has an edit distance
of 1 to the ground truth (Fig. 5 (a)), as merging q11 and
q12 will make it identical to the ground truth. The multicast
tree (Fig. 5 (c)) has an edit distance of 3 to the ground
truth, requiring d4 to be split once and d5 to be split twice.

7

root

d1

d4d3d2

d5

root root

d1 d4

d3d2

d5

d2 d3 d4

d5

d1

q1 q2 q3

q4

q11 q12 q2 q3

q4

q1

(a) ground truth (b) inferred topology (c) multicast tree
Fig. 5. Example: (b) has edit distance 1 to (a); (c) has edit distance 3 to (a).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

ti
v
e

 e
rr

o
r

(a) design of S (n = 106)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

number of measurements 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
la

ti
v
e

 e
rr

o
r

iterative

direct

proposed

(b) initialization method (ε = 0.01)

Fig. 6. Evaluation of design choices (K∗ = K = 3, 100 Monte Carlo runs)

B. Results on Parameter Estimation

We first evaluate the proposed estimator against benchmarks
for inferring the δ-parameters of a single path.

Evaluation of design choices: We first evaluate the step
size ε for set S = {0, ε, 2ε, . . . , 1}, at which to fit the
empirical Laplace transform. As shown in Fig. 6 (a), the
smaller the step size ε, the smaller the estimation error, as
the estimator will have more data points to fit the Laplace
transform. This is, however, at the cost of increased running
time, as the complexity of evaluating the objective function
(4a) is proportional to |S|. Moreover, we evaluate the proposed
two-step method of solving (4) as in lines 6–8 of Algorithm 1
against only performing the iterative initialization in lines 6–7
(‘iterative’) or directly optimizing (4) from an arbitrary initial
value (‘direct’). The result, in Fig. 6 (b), shows that the pro-
posed method significantly improves the estimation accuracy.

Comparison with benchmarks: We compare the proposed
estimator against benchmarks in a variety of settings as shown
in Fig. 7–8. MLE is much slower than others (e.g., taking over
15 minutes at n = 105 compared to 0.02 seconds for others)
and hence has fewer Monte Carlo runs. We see that: (i) all the
Laplace-based estimators (‘proposed’, ‘Harris 1/2’, ‘squared’)
outperform MLE, indicating the advantage of our approach
based on the Laplace transform; (ii) directly optimizing
the parameter of interest (i.e., δ) to fit the Laplace transform
(as in ‘proposed’ and ‘squared’) outperforms first estimating
the Laplace transform and then inferring the corresponding
parameter of interest (as in ‘Harris 1/2’); (iii) minimizing the
absolute error (‘proposed’) slightly outperforms minimizing
the squared error (‘squared’) as K∗ increases. Furthermore,
we see from Fig. 7 that as K∗ increases, the errors of all
the estimators increase significantly, indicating a limitation
on the path length for achieving reasonable accuracy.
Meanwhile, comparing Fig. 8 with Fig. 7 (a) shows that the
estimators based on Algorithm 1 (‘proposed’, ‘squared’) are
robust against the presence of virtual queues (i.e., K∗ < K),
validating our idea of using the fitting error to estimate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

number of measurements 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
la

ti
v
e

 e
rr

o
r

proposed

squared

Harris 1

Harris 2

MLE

(a) K = K∗ = 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

number of measurements 105

0

0.5

1

1.5

2

2.5

3

re
la

ti
v
e

 e
rr

o
r

proposed

squared

Harris 1

Harris 2

MLE

(b) K = K∗ = 4

Fig. 7. Comparison under different #queues (S = {0, 0.01, . . . , 1}, 20
Monte Carlo runs for MLE, 100 runs for the others).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

number of measurements 105

0

0.5

1

1.5

2

2.5

3

3.5

re
la

ti
v
e

 e
rr

o
r

proposed

squared

Harris 1

Harris 2

MLE

(a) K = 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

number of measurements 105

0

0.5

1

1.5

2

2.5

3

3.5

re
la

ti
v
e

 e
rr

o
r

proposed

squared

Harris 1

Harris 2

MLE

(b) K = 5

Fig. 8. Comparison under different #virtual queues (K∗ = 3, S =
{0, 0.01, · · · , 1}, 20 Monte Carlo runs for MLE, 100 runs for the others).

the actual number of queues (lines 9–10 in Algorithm 1).

C. Results on Topology Inference

Having validated the proposed estimator, we now evaluate
the accuracy of using its outputs to infer the topology. All the
results are based on 20 Monte Carlo runs.

Impact of threshold ∆ and minimum gap ∆∗: Given the
estimated δ-parameters, the remaining design parameter is the
threshold ∆ for detecting the parameters associated with the
same queue. According to Theorem IV.1, we want ∆ < ∆∗/2,
where ∆∗ denotes the minimum gap between the parameters
of different queues. Our experiments with various ∆ values
(plots omitted due to space limitation) also indicated that a
small ∆ (e.g., ∆ = 0.01) works well in general.

Intuitively, our approach will work better if the δ-
parameters for different queues are more separated, i.e., when
the minimum gap ∆∗ is larger. However, as shown in Fig. 9,
our algorithm is actually not sensitive to ∆∗. Moreover, for
small topologies as evaluated here, the finite-sample accuracy
of our algorithm can even beat the asymptotic accuracy
of existing multicast-based algorithms (e.g., RNJ [5]). This
is because instead of only using low-order statistics (e.g.,
delay variances and covariances [5]), we examine the entire
(empirical) distribution of measurements, which allows us to
discover the physical topology that may contain more internal
nodes than the (logical) multicast tree.

Impact of tree size: We vary the size of the ground truth
topology by separately varying the width of the tree (indicated
by the number of destinations N) and the height of the
tree (indicated by the maximum path length K), as shown
in Fig. 10. As expected, growing either of these parameters
will increase the inference error, as the ground truth topology
becomes more complex. Compared with solutions designed
to infer the multicast tree, we see that our algorithm achieves

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of measurements

0

1

2

3

4

5

6

7

8

9

e
d

it
 d

is
ta

n
c
e

*
 = 0

*
 = 0.05

*
 = 0.1

multicast

Fig. 9. Impact of minimum gap ∆∗ (K = 4, N = 5, ∆ = 0.01, solid: edit
distance for inferred topology, dotted: edit distance for multicast tree).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of measurements

0

2

4

6

8

10

12

14

16

e
d

it
 d

is
ta

n
c
e

N = 4

N = 6

N = 8

N = 10

(a) vary N (K = 4)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of measurements

0

2

4

6

8

10

12

14

e
d

it
 d

is
ta

n
c
e

K = 3

K = 4

K = 5

K = 6

(b) vary K (N = 5)
Fig. 10. Impact of tree size (∆∗ = 0, ∆ = 0.01, solid: edit distance for
inferred topology, dotted: edit distance for multicast tree).

a better accuracy for small topologies (K ≤ 4, N ≤ 6) due
to its capability of inferring more internal nodes (degree-2
nodes), but becomes less accurate for larger topologies due
to the difficulty of estimating the parameters of long tandems
of queues and distinguishing the parameters of many queues.
We believe this is a fundamental limitation due to the lack of
measurements with controllable correlation across paths.

Discussion: We note that the limitation on K is likely to
be acceptable in practice as real networks tend to have small
diameters, e.g., in AS6461, a single tree of height 4 (i.e.,
K = 4) can cover 83% of nodes. The limitation on N may
be addressed by “stiching” trees inferred for small subsets of
destinations as in [8], or a hybrid approach that combines
our solution with occasional multicast probing. A detailed
investigation of these directions is left to future work.

VI. CONCLUSION

We revisited a classic problem of inferring a tree topology
from end-to-end measurements originated by a single source,
through a fundamentally different approach that utilizes the
detailed queuing dynamics inside the network. Compared to
the classical approaches based on multicast or its approxi-
mations, our approach has the advantages that it can utilize
passive measurements and potentially recover the physical
topology with more hidden nodes (degree-2 nodes). Our
solution includes a novel estimator that infers the residual
capacities of a tandem of queues from end-to-end delays, and
efficient algorithms that use the inferred residual capacities to
identify the queues shared between paths and infer the queuing
network topology. Our solution was guaranteed to be asymp-
totically consistent, and even outperformed existing solutions
based on active probing for small topologies. Meanwhile, we
also identified potential directions for further improvements.

REFERENCES

[1] R. Caceres, N. G. Duffield, J. Horowitz, F. L. Presti, and D. Towsley,
“Loss-based inference of multicast network topology,” in IEEE CDC,
1999.

[2] N. Duffield, J. Horowitz, F. L. Presti, and D. Towsley, “Multicast
topology inference from measured end-to-end loss,” IEEE Transactions
on Information Theory, vol. 48, no. 1, pp. 26–45, January 2002.

[3] N. G. Duffield and F. L. Presti, “Network tomography from measured
end-to-end delay covariance,” IEEE/ACM Transactions on Networking,
vol. 12, no. 6, pp. 978–992, December 2004.

[4] N. G. Duffield, J. Horowitz, and F. L. Presti, “Adaptive multicast
topology inference,” in IEEE INFOCOM, 2001.

[5] J. Ni, H. Xie, S. Tatikonda, and Y. R. Yang, “Efficient and dynamic
routing topology inference from end-to-end measurements,” IEEE/ACM
Transactions on Networking, vol. 18, no. 1, pp. 123–135, February 2010.

[6] M. Coates, R. Castro, M. Gadhiok, R. King, Y. Tsang, and R. Nowak,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in ACM SIGMETRICS, June 2002.

[7] P. Sattari, C. Fragouli, and A. Markopoulou, “Active topology inference
using network coding,” Physical Communication, vol. 6, pp. 142–163,
March 2013.

[8] P. Sattari, M. Kurant, A. Anandkumar, A. Markopoulou, and M. G. Rab-
bat, “Active learning of multiple source multiple destination topologies,”
IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 1926–1937,
April 2014.

[9] H. Yao, S. Jaggi, and M. Chen, “Passive network tomography for
erroneous networks: A network coding approach,” IEEE Transactions
on Information Theory, vol. 58, no. 9, pp. 5922–5940, September 2012.

[10] M. Hirabaru, “Impact of bottleneck queue size on tcp protocols and its
measurement,” IEICE transactions on information and systems, vol. 89,
no. 1, pp. 132–138, 2006.

[11] D. Katabi and C. Blake, “Inferring congestion sharing and path
characteristics from packet interarrival times,” Mass. Inst. Technol.,
Cambridge, MA, MIT-LCS-TR-828, 2001.

[12] W. Wei, B. Wang, D. Towsley, and J. Kurose, “Model-based identifi-
cation of dominant congested links,” in Proceedings of the 3rd ACM
SIGCOMM Conference on Internet Measurement, 2003, p. 115–128.

[13] F. Baccelli, B. Kauffmann, and D. Veitch, “Inverse problems in queueing
theory and Internet probing,” Queueing Systems, vol. 63, p. 59–107,
2009.

[14] F. Pin, D. Veitch, and B. Kauffmann, “Statistical estimation of delays
in a multicast tree using accelerated EM,” Queueing Systems, vol. 66,
p. 369–412, 2010.

[15] A. Asanjarani, Y. Nazarathy, and P. K. Pollett, “Parameter and state
estimation in queues and related stochastic models: A bibliography,”
2017.

[16] D. Gross, J. F. Shortle, and C. M. Harris, “Fundamentals of queuing
theory. fourth.”

[17] L. Esparza, “Maximum likelihood estimation of phase-type distribu-
tions,” Ph.D. dissertation, 2011.

[18] H. L. Van Trees, Detection, Estimation, and Modulation Theory. John
Wiley & Sons, 2004.

[19] J. Abate and W. Whitt, “Numerical inversion of Laplace transforms of
probability distributions,” ORSA Journal on Computing, vol. 7, no. 1,
pp. 38–43, 1995.

[20] C. M. Harris and W. G. Marchal, “Distribution estimation using Laplace
transforms,” INFORMS Journal on Computing, vol. 10, no. 4, pp. 448–
458, 1998.

[21] A. V. Den Boer and M. Mandjes, “Convergence rates of Laplace-
transform based estimators,” Bernoulli, vol. 23, no. 4A, pp. 2533–2557,
2017.

[22] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in ACM SIGCOMM, August 2002.

[23] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence prop-
erties of the Nelder-Mead simplex method in low dimensions,” SIAM
Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.

[24] P. Bille, “A survey on tree edit distance and related problems,” Theo-
retical Computer Science, vol. 337, no. 1-3, pp. 22–34, 2005.

[25] Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris, “Looking Glass of
NFV: Inferring the structure and state of NFV network from external
observations,” IEEE/ACM Transactions on Networking, vol. 28, no. 4,
pp. 1477–1490, 2020.

9

