Appendix A

Proofs

A. 1 Proof of Theorem 4.1:

Proof. For 1), let X^{*} denote the optimal k-means centers of P. Since \mathbf{S} is an ϵ-coreset with probability $\geq 1-\delta$ (Theorem 3.2), by Definition 3.2, the following holds with probability $\geq 1-\delta$:

$$
\begin{align*}
\operatorname{cost}(P, X) \leq \frac{1}{1-\epsilon} \operatorname{cost}(\mathbf{S}, X) & \leq \frac{1}{1-\epsilon} \operatorname{cost}\left(\mathbf{S}, X^{*}\right) \\
& \leq \frac{1+\epsilon}{1-\epsilon} \operatorname{cost}\left(P, X^{*}\right) \tag{25}
\end{align*}
$$

For 2), the cost of transferring (S, Δ, w) is dominated by the cost of transferring S. Since S lies in a d^{\prime}-dimensional subspace spanned by the columns of $V^{\left(d^{\prime}\right)}$, it suffices to transmit the coordinates of each point in S in this subspace together with $V^{\left(d^{\prime}\right)}$. The former incurs a cost of $O\left(|S| \cdot d^{\prime}\right)$, and the latter incurs a cost of $O\left(d d^{\prime}\right)$. Plugging $d^{\prime}=O\left(k / \epsilon^{2}\right)$ and $|S|=\tilde{O}\left(k^{3} / \epsilon^{4}\right)$ from Theorem 3.2 yields the overall communication cost as $O\left(d k / \epsilon^{2}\right)$.

A. 2 Proof of Lemma 4.1

Proof. Let $\delta^{\prime}=\delta /(2 n k)$. By the JL Lemma (Lemma 3.1), there exists $d^{\prime}=O\left(\epsilon^{-2} \log \left(1 / \delta^{\prime}\right)\right)=O\left(\epsilon^{-2} \log (n k / \delta)\right)$, such that every $x \in \mathbb{R}^{d}$ satisfies $\|\pi(x)\| \approx_{1+\epsilon}\|x\|$ with probability $\geq 1-\delta^{\prime}$. By the union bound, this implies that with probability $\geq 1-\delta$, every $p-x_{i}$ for $p \in P$ and $x_{i} \in X \cup X^{*}$ satisfies $\left\|\pi(p)-\pi\left(x_{i}\right)\right\| \approx_{1+\epsilon}\left\|p-x_{i}\right\|$. Therefore, with probability $\geq 1-\delta$,

$$
\begin{align*}
\operatorname{cost}(\pi(P), \pi(X)) & =\sum_{p \in P} \min _{x_{i} \in X}\left\|\pi(p)-\pi\left(x_{i}\right)\right\|^{2} \tag{26}\\
& \leq \sum_{p \in P} \min _{x_{i} \in X}(1+\epsilon)^{2}\left\|p-x_{i}\right\|^{2} \\
& =(1+\epsilon)^{2} \operatorname{cost}(P, X), \tag{27}
\end{align*}
$$

$$
(26) \geq \sum_{p \in P} \min _{x_{i} \in X} \frac{1}{(1+\epsilon)^{2}}\left\|p-x_{i}\right\|^{2}
$$

$$
=\frac{1}{(1+\epsilon)^{2}} \operatorname{cost}(P, X) .
$$

Combining (27) and (28) proves (5). Similar argument will prove (6).

A. 3 Proof of Theorem 4.2

Proof. For 1), let X^{*} be the optimal k-means centers of P and $\mathbf{S}^{\prime}:=\left(S^{\prime}, \Delta, w\right)$ be generated in line 3 of Algorithm 1. With probability at least $(1-\delta)^{2}, \pi_{1}$ satisfies $(5,6)$ and π_{2} generates an ϵ-coreset. Thus, with probability at least ($1-$ $\delta)^{2}$,

$$
\begin{align*}
\operatorname{cost}(P, X) & \leq(1+\epsilon)^{2} \operatorname{cost}\left(\pi_{1}(P), X^{\prime}\right) \tag{29}\\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left(\mathbf{S}^{\prime}, X^{\prime}\right) \tag{30}\\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left(\mathbf{S}^{\prime}, \pi_{1}\left(X^{*}\right)\right) \tag{31}\\
& \leq \frac{(1+\epsilon)^{3}}{1-\epsilon} \operatorname{cost}\left(\pi_{1}(P), \pi_{1}\left(X^{*}\right)\right) \tag{32}\\
& \leq \frac{(1+\epsilon)^{5}}{1-\epsilon} \operatorname{cost}\left(P, X^{*}\right) \tag{33}
\end{align*}
$$

where (29) is by (5) and that $\pi_{1}(X)=X^{\prime}$, (30) is because \mathbf{S}^{\prime} is an ϵ-coreset of $\pi_{1}(P),(31)$ is because X^{\prime} minimizes $\operatorname{cost}\left(\mathbf{S}^{\prime}, \cdot\right)$, (32) is again because \mathbf{S}^{\prime} is an ϵ-coreset of $\pi_{1}(P)$, and (33) is by (6).

For 2), the communication cost is dominated by transmitting S^{\prime}. By Lemma 4.1, the dimension of P^{\prime} is $d^{\prime}=$ $O\left(\epsilon^{-2} \log (n k / \delta)\right)=O\left(\epsilon^{-2} \log n\right)$. By Theorem 3.2, the cardinality of S^{\prime} is $\left|S^{\prime}\right|_{\tilde{d}}=O\left(k^{3} \epsilon^{-4} \log ^{2}(k) \log (1 / \delta)\right)$. Moreover, points in S^{\prime} lie in a \tilde{d}-dimensional subspace for $\tilde{d}=O\left(k / \epsilon^{2}\right)$. Thus, it suffices to transmit the coordinates of points in S^{\prime} in the \tilde{d}-dimensional subspace and a basis of the subspace. Thus, the total communication cost is

$$
\begin{align*}
O\left(\left(\left|S^{\prime}\right|+d^{\prime}\right) \tilde{d}\right) & =O\left(\frac{k^{4}}{\epsilon^{6}} \log ^{2}(k) \log \left(\frac{1}{\delta}\right)+\frac{k}{\epsilon^{4}} \log n\right) \\
& =O\left(\frac{k \log n}{\epsilon^{4}}\right) \tag{34}
\end{align*}
$$

For 3), note that for a given projection matrix $\Pi \in$ $\mathbb{R}^{d \times d^{\prime}}$ such that $\pi_{1}(P):=A_{P} \Pi$, line 2 takes $O\left(n d d^{\prime}\right)=$ $O\left(n d \epsilon^{-2} \log n\right)$ time, where we have plugged in $d^{\prime}=$ $O\left(\epsilon^{-2} \log n\right)$. By Theorem 3.2, line 3 takes time

$$
\begin{align*}
& O\left(\min \left(n d^{\prime 2}, n^{2} d^{\prime}\right)+\frac{n k}{\epsilon^{2}}\left(d^{\prime}+k \log \left(\frac{1}{\delta}\right)\right)\right) \\
= & O\left(\frac{n}{\epsilon^{2}}\left(\frac{\log ^{2} n}{\epsilon^{2}}+\frac{k \log n}{\epsilon^{2}}+k^{2} \log \left(\frac{1}{\delta}\right)\right)\right) \tag{35}
\end{align*}
$$

Thus, the total complexity at the data source is:

$$
\begin{align*}
& O\left(\frac{n}{\epsilon^{2}}\left(\frac{\log ^{2} n}{\epsilon^{2}}+\frac{k \log n}{\epsilon^{2}}+d \log n+k^{2} \log \left(\frac{1}{\delta}\right)\right)\right) \\
= & O\left(\frac{n d}{\epsilon^{2}} \log ^{2} n\right)=\tilde{O}\left(\frac{n d}{\epsilon^{2}}\right) . \tag{36}
\end{align*}
$$

A. 4 Proof of Lemma 4.2

Proof. The proof is analogous to that of Lemma 4.1. Let $\delta^{\prime}=\delta /\left(2 n^{\prime} k\right)$. Then there exists $d^{\prime}=O\left(\epsilon^{-2} \log \left(1 / \delta^{\prime}\right)\right)=$ $O\left(\epsilon^{-2} \log \left(n^{\prime} k / \delta\right)\right)$, such that every $x \in \mathbb{R}^{d}$ satisfies $\|\pi(x)\| \approx_{1+\epsilon}\|x\|$ with probability $\geq 1-\delta^{\prime}$. By the union bound, this implies that with probability $\geq 1-\delta$, every $p \in S$ and $x_{i} \in X \cup X^{*}$ satisfy $\left\|\pi(p)-\pi\left(x_{i}\right)\right\| \approx_{1+\epsilon}\left\|p-x_{i}\right\|$. Therefore,

$$
\begin{align*}
& \operatorname{cost}((\pi(S), \Delta, w), \pi(X)) \\
& \quad=\sum_{p \in S} w(p) \cdot \min _{x_{i} \in X}\left\|\pi(p)-\pi\left(x_{i}\right)\right\|^{2}+\Delta \tag{37}\\
& \quad \leq(1+\epsilon)^{2}\left(\sum_{p \in S} w(p) \cdot \min _{x_{i} \in X}\left\|p-x_{i}\right\|^{2}+\Delta\right) \\
& =(1+\epsilon)^{2} \operatorname{cost}(\mathbf{S}, X) \tag{38}\\
& (37) \geq \frac{1}{(1+\epsilon)^{2}}\left(\sum_{p \in S} w(p) \cdot \min _{x_{i} \in X}\left\|p-x_{i}\right\|^{2}+\Delta\right) \\
& \quad=\frac{1}{(1+\epsilon)^{2}} \operatorname{cost}(\mathbf{S}, X), \tag{39}
\end{align*}
$$

which prove (7). Similar argument proves (8).

A. 5 Proof of Theorem 4.3

Proof. For 1), let X^{*} be the optimal k-means centers of P and $\mathbf{S}:=(S, \Delta, w)$ generated in line 2 of Algorithm 2. With probability at least $(1-\delta)^{2}, \mathbf{S}$ is an ϵ-coreset of P, and π_{1} satisfies $(7,8)$. Thus, with this probability,

$$
\begin{align*}
\operatorname{cost}(P, X) & \leq \frac{1}{1-\epsilon} \operatorname{cost}(\mathbf{S}, X) \tag{40}\\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), X^{\prime}\right) \tag{41}\\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \pi_{1}\left(X^{*}\right)\right) \tag{42}\\
& \leq \frac{(1+\epsilon)^{4}}{1-\epsilon} \operatorname{cost}\left(\mathbf{S}, X^{*}\right) \tag{43}\\
& \leq \frac{(1+\epsilon)^{5}}{1-\epsilon} \operatorname{cost}\left(P, X^{*}\right) \tag{44}
\end{align*}
$$

where (40) is because \mathbf{S} is an ϵ-coreset of $P,(41)$ is due to (7) (note that $\pi_{1}(S)=S^{\prime}$ and $\pi_{1}(X)=X^{\prime}$), (42) is because X^{\prime} minimizes $\operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \cdot\right)$, (43) is due to (8), and (44) is again because \mathbf{S} is an ϵ-coreset of P.

For 2), note that by Theorem 3.2, the cardinality of S needs to be $n^{\prime}=O\left(k^{3} \epsilon^{-4} \log ^{2}(k) \log (1 / \delta)\right)$. By Lemma 4.2, the dimension of S^{\prime} needs to be $d^{\prime}=O\left(\epsilon^{-2} \log \left(n^{\prime} k / \delta\right)\right)$. Thus, the cost of transmitting $\left(S^{\prime}, \Delta, w\right)$, dominated by the cost of transmitting S^{\prime}, is

$$
\begin{align*}
O\left(n^{\prime} d^{\prime}\right) & =O\left(\frac{k^{3} \log ^{2} k}{\epsilon^{6}} \log \left(\frac{1}{\delta}\right)\left(\log k+\log \left(\frac{1}{\epsilon}\right)+\log \left(\frac{1}{\delta}\right)\right)\right) \\
& =\tilde{O}\left(\frac{k^{3}}{\epsilon^{6}}\right) \tag{45}
\end{align*}
$$

For 3), we know from Theorem 3.2 that line 2 of Algorithm 2 takes time $O\left(\min \left(n d^{2}, n^{2} d\right)+n k \epsilon^{-2}(d+\right.$ $k \log (1 / \delta))$). Given a projection matrix $\Pi \in \mathbb{R}^{d \times d^{\prime}}$ such that $\pi_{1}(S):=A_{S} \Pi$, line 3 takes time $O\left(n^{\prime} d d^{\prime}\right)$. Thus, the total complexity at the data source is
$O\left(\min \left(n d^{2}, n^{2} d\right)+\frac{k}{\epsilon^{2}} n d+\frac{k^{2} \log k}{\epsilon^{2}} n+\frac{k^{3} \log ^{3} k\left(\log k+\log \left(\frac{1}{\epsilon}\right)\right)}{\epsilon^{6}} d\right)$
$=O(n d \cdot \min (n, d))$.

A. 6 Proof of Theorem 4.4

Proof. Let $n^{\prime}:=|S|, d^{\prime}$ be the dimension after $\pi_{1}^{(1)}$, and $d^{\prime \prime}$ be the dimension after $\pi_{1}^{(2)}$. Let X^{*} be the optimal k-means centers for P.

For 1), note that with probability $\geq(1-\delta)^{3}, \pi_{1}^{(1)}$ and $\pi_{1}^{(2)}$ will preserve the k-means cost up to a multiplicative
factor of $(1+\epsilon)^{2}$, and π_{2} will generate an ϵ-coreset of P^{\prime}. Thus, with this probability, we have

$$
\begin{align*}
\operatorname{cost}(P, X) & \leq(1+\epsilon)^{2} \operatorname{cost}\left(P^{\prime}, \pi_{1}^{(1)}(X)\right) \tag{47}\\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left((S, \Delta, w), \pi_{1}^{(1)}(X)\right) \tag{48}\\
\leq & \frac{(1+\epsilon)^{4}}{1-\epsilon} \operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}(X)\right) \tag{49}\\
\leq & \frac{(1+\epsilon)^{4}}{1-\epsilon} \operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}\left(X^{*}\right)\right) \tag{50}\\
& \leq \frac{(1+\epsilon)^{6}}{1-\epsilon} \operatorname{cost}\left((S, \Delta, w), \pi_{1}^{(1)}\left(X^{*}\right)\right) \tag{51}\\
& \leq \frac{(1+\epsilon)^{7}}{1-\epsilon} \operatorname{cost}\left(P^{\prime}, \pi_{1}^{(1)}\left(X^{*}\right)\right) \tag{52}\\
& \leq \frac{(1+\epsilon)^{9}}{1-\epsilon} \operatorname{cost}\left(P, X^{*}\right) \tag{53}
\end{align*}
$$

where (47) is by Lemma 4.1, (48) is because (S, Δ, w) is an ϵ-coreset of $P^{\prime},(49)$ is by Lemma $4.2,(50)$ is because $\pi_{1}^{(2)} \circ \pi_{1}^{(1)}(X)=X^{\prime}$, which is optimal in minimizing $\operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \cdot\right),(51)$ is by Lemma 4.2, (52) is because (S, Δ, w) is an ϵ-coreset of P^{\prime}, and (53) is by Lemma 4.1.

For 2), note that by Theorem 3.2, the cardinality of the coreset constructed by FSS is $n^{\prime}=O\left(k^{3} \log ^{2} k \epsilon^{-4} \log (1 / \delta)\right)$, which is independent of the dimension of the input dataset. Thus, the communication cost remains the same as that of Algorithm 2, which is $\tilde{O}\left(k^{3} / \epsilon^{6}\right)$.

For 3), note that the first JL projection $\pi_{1}^{(1)}$ takes $O\left(n d d^{\prime}\right)$ time, where $d^{\prime}=O\left(\log n / \epsilon^{2}\right)$ by Lemma 4.1, and the second JL projection $\pi_{1}^{(2)}$ takes $O\left(n^{\prime} d^{\prime} d^{\prime \prime}\right)$ time, where n^{\prime} is specified by Theorem 3.2 as above and $d^{\prime \prime}=O\left(\epsilon^{-2} \log \left(n^{\prime} k / \delta\right)\right)$ by Lemma 4.2. Moreover, from the proof of Theorem 4.2, we know that applying FSS after a JL projection takes $O\left(\frac{n}{\epsilon^{2}}\left(\log ^{2} n / \epsilon^{2}+k \log n / \epsilon^{2}+k^{2} \log \frac{1}{\delta}\right)\right)$ time. Thus, the total complexity at the data source is

$$
\begin{align*}
& O\left(n d d^{\prime}+\frac{n}{\epsilon^{2}}\left(\frac{\log ^{2} n}{\epsilon^{2}}+\frac{k \log n}{\epsilon^{2}}+k^{2} \log \frac{1}{\delta}\right)+n^{\prime} d^{\prime} d^{\prime \prime}\right) \\
= & O\left(\frac{n d \log n}{\epsilon^{2}}+\frac{n \log ^{2} n}{\epsilon^{4}}\right)=\tilde{O}\left(\frac{n d}{\epsilon^{2}}\right) . \tag{54}
\end{align*}
$$

A. 7 Proof of Theorem 5.3

Proof. For 1), let $P:=\bigcup_{i=1}^{m} P_{i}, \tilde{P}:=\bigcup_{i=1}^{m} \tilde{P}_{i}$, and $\mathbf{S}:=$ $(S, 0, w)$ be the output of disSS. Let X^{*} be the optimal k means centers of P. By Theorem 5.2, we know that with probability $\geq 1-\delta$,

$$
\begin{align*}
\operatorname{cost}(\tilde{P}, X) \leq \frac{1}{1-\epsilon} \operatorname{cost}(\mathbf{S}, X) & \leq \frac{1}{1-\epsilon} \operatorname{cost}\left(\mathbf{S}, X^{*}\right) \\
& \leq \frac{1+\epsilon}{1-\epsilon} \operatorname{cost}\left(\tilde{P}, X^{*}\right) \tag{55}
\end{align*}
$$

where the second inequality is because X is optimal for \mathbf{S}. Moreover, by Theorem 5.1, we have

$$
\begin{align*}
& (1-\epsilon) \operatorname{cost}(P, X)-\Delta \leq \operatorname{cost}(\tilde{P}, X) \tag{56}\\
& \operatorname{cost}\left(\tilde{P}, X^{*}\right) \leq(1+\epsilon) \operatorname{cost}\left(P, X^{*}\right)-\Delta \tag{57}
\end{align*}
$$

Combining $(55,56,57)$ yields

$$
\begin{align*}
(1-\epsilon) \operatorname{cost}(P, X)-\Delta & \leq \frac{1+\epsilon}{1-\epsilon} \cdot\left((1+\epsilon) \operatorname{cost}\left(P, X^{*}\right)-\Delta\right) \\
& \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}\left(P, X^{*}\right)-\Delta \tag{58}
\end{align*}
$$

which gives the desired approximation factor.
For 2), note that disPCA incurs a cost of $O(m$. $\left.\left(k / \epsilon^{2}\right) \cdot d\right)$ for transmitting $O\left(k / \epsilon^{2}\right)$ vectors in \mathbb{R}^{d} from each of the m data sources, and disSS incurs a cost of $O\left(\frac{k}{\epsilon^{2}} \cdot\left(\epsilon^{-4}\left(\frac{k^{2}}{\epsilon^{2}}+\log \frac{1}{\delta}\right)+m k \log \frac{m k}{\delta}\right)\right)$ for transmitting $O\left(\epsilon^{-4}\left(\frac{k^{2}}{\epsilon^{2}}+\log \frac{1}{\delta}\right)+m k \log \frac{m k}{\delta}\right)$ vectors in $\mathbb{R}^{O\left(k / \epsilon^{2}\right)}$. For $d \gg m, k, 1 / \epsilon$, and $1 / \delta$, the total communication cost is dominated by the cost of disPCA.

For 3), as computing the local SVD at data source i takes $O\left(n_{i} d \cdot \min \left(n_{i}, d\right)\right)$ time, the complexity of disPCA at the data sources is $O(n d \cdot \min (n, d))$. The complexity of disSS at data source i is dominated by the computation of bicriteria approximation of \tilde{P}_{i}, which takes $O\left(n_{i} t_{2} k \log \frac{1}{\delta}\right)=O\left(n k^{2} \epsilon^{-2} \log \frac{1}{\delta}\right)$ according to [42]. For $\min (n, d) \gg m, k, 1 / \epsilon$, and $1 / \delta$, the overall complexity is dominated by that of disPCA.

A. 8 Proof of Lemma 5.1

Proof. Let \tilde{P} be the projection of P using the principal components computed by disPCA. Then by Theorem 5.1, there exists $\Delta \geq 0$ such that

$$
\begin{equation*}
(1-\epsilon) \operatorname{cost}(P, X) \leq \operatorname{cost}(\tilde{P}, X)+\Delta \leq(1+\epsilon) \operatorname{cost}(P, X) \tag{59}
\end{equation*}
$$

Moreover, by Theorem $5.2, \mathbf{S}$ is an ϵ-coreset of \tilde{P} with probability at least $1-\delta$. Multiplying (59) by $1-\epsilon$, we have

$$
\begin{align*}
(1-\epsilon)^{2} \operatorname{cost}(P, X) & \leq(1-\epsilon) \operatorname{cost}(\tilde{P}, X)+(1-\epsilon) \Delta \tag{60}\\
& \leq \operatorname{cost}(\mathbf{S}, X)+\Delta, \tag{61}
\end{align*}
$$

where we can obtain (61) from (60) because \mathbf{S} is an ϵ-coreset of \tilde{P}. Similarly, multiplying (59) by $1+\epsilon$, we have

$$
\begin{align*}
(1+\epsilon)^{2} \operatorname{cost}(P, X) & \geq(1+\epsilon) \operatorname{cost}(\tilde{P}, X)+(1+\epsilon) \Delta \\
& \geq \operatorname{cost}(\mathbf{S}, X)+\Delta . \tag{62}
\end{align*}
$$

Combining $(61,62)$ yields the desired bound.

A. 9 Proof of Theorem 5.4

Proof. For 1), let $\mathbf{S}^{\prime}:=\left(\bigcup_{i=1}^{m} S_{i}^{\prime}, \Delta, w\right)$, where $\left(\bigcup_{i=1}^{m} S_{i}^{\prime}, 0, w\right)$ is the overall coreset constructed by line 3 of Algorithm 4, and Δ is a constant satisfying Lemma 5.1 for the input dataset $\left\{P_{i}^{\prime}\right\}_{i=1}^{m}$ as in line 3 of Algorithm 4. Let $P:=\bigcup_{i=1}^{m} P_{i}$, and X^{*} be the optimal k-means centers for P. Then with probability $\geq(1-\delta)^{2}$, we have

$$
\begin{align*}
\operatorname{cost}(P, X) & \leq(1+\epsilon)^{2} \operatorname{cost}\left(\pi_{1}(P), X^{\prime}\right) \tag{63}\\
& \leq \frac{(1+\epsilon)^{2}}{(1-\epsilon)^{2}} \operatorname{cost}\left(\mathbf{S}^{\prime}, X^{\prime}\right) \tag{64}\\
& \leq \frac{(1+\epsilon)^{2}}{(1-\epsilon)^{2}} \operatorname{cost}\left(\mathbf{S}^{\prime}, \pi_{1}\left(X^{*}\right)\right) \tag{65}\\
& \leq \frac{(1+\epsilon)^{4}}{(1-\epsilon)^{2}} \operatorname{cost}\left(\pi_{1}(P), \pi_{1}\left(X^{*}\right)\right) \tag{66}\\
& \leq \frac{(1+\epsilon)^{6}}{(1-\epsilon)^{2}} \operatorname{cost}\left(P, X^{*}\right) \tag{67}
\end{align*}
$$

where (63) is by Lemma 4.1 (note that $\pi_{1}(X)=$ $\left.X^{\prime}\right)$, (64) is by Lemma 5.1 (note that $\operatorname{cost}\left(\mathbf{S}^{\prime}, X^{\prime}\right)=$ $\left.\operatorname{cost}\left(\left(\bigcup_{i=1}^{m} S_{i}^{\prime}, 0, w\right), X^{\prime}\right)+\Delta\right)$, (65) is because X^{\prime} is optimal in minimizing $\operatorname{cost}\left(\mathbf{S}^{\prime}, \cdot\right)$, (66) is again by Lemma 5.1, and (67) is again by Lemma 4.1.

For 2), only line 3 incurs communication cost. By Theorem 5.3, we know that applying BKLW to a distributed dataset $\left\{P_{i}^{\prime}\right\}_{i=1}^{m}$ with dimension d^{\prime} incurs a cost of $O\left(m k d^{\prime} / \epsilon^{2}\right)$, and by Lemma 4.1, we know that $d^{\prime}=$ $O\left(\log n / \epsilon^{2}\right)$, which yields the desired result.

For 3), the JL projection at each data source incurs a complexity of $O\left(n d d^{\prime}\right)=O\left(n d \log n / \epsilon^{2}\right)$. By Theorem 5.3, applying BKLW incurs a complexity of $O\left(n d^{\prime} \cdot \min \left(n, d^{\prime}\right)\right)=$ $O\left(n \log ^{2} n / \epsilon^{4}\right)$ at each data source. Together, the complexity is $O\left(\frac{n d}{\epsilon^{2}} \log n+\frac{n}{\epsilon^{4}} \log ^{2} n\right)=\tilde{O}\left(n d / \epsilon^{4}\right)$.

A.10 Proof of Theorem 6.1

Proof. We only present the proof for Algorithm 3 with the incorporation of quantization, as the proofs for the other algorithms are similar. Consider a coreset (S, Δ, w) and a set of k-means centers X. If we quantize S into $S_{Q T}$ with a maximum quantization error of $\Delta_{Q T}$, then for each coreset point $q \in S$ and its quantized version $q^{\prime} \in S_{Q T}$, we have $\left\|q-q^{\prime}\right\| \leq \Delta_{Q T}$. On the other hand, from [6], the k-means cost function is $2 \Delta_{D}$-Lipschitz-continuous, which yields $\left|\operatorname{cost}(q, X)-\operatorname{cost}\left(q^{\prime}, X\right)\right| \leq 2 \Delta_{D} \Delta_{Q T}$. Thus, the difference in the k-means cost between the original and the quantized coresets is bounded by

$$
\begin{align*}
\mid \operatorname{cost}((S, \Delta, w), X)- & \operatorname{cost}\left(\left(S_{Q T}, \Delta, w\right), X\right) \mid \\
& \leq 2 \Delta_{D} \Delta_{Q T} \sum_{q \in S} w(q) \tag{68}
\end{align*}
$$

as $\operatorname{cost}((S, \Delta, w), X)=\sum_{q \in S} w(q) \operatorname{cost}(q, X)+\Delta$.
Following the arguments in the proof of Theorem 4.4, we
see that with probability $\geq(1-\delta)^{3}$:

$$
\begin{align*}
& \operatorname{cost}(P, X) \\
& \leq\left(1+\epsilon_{1}^{(1)}\right)^{2} \operatorname{cost}\left(P^{\prime}, \pi_{1}^{(1)}(X)\right) \tag{69}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}}{1-\epsilon_{2}} \operatorname{cost}\left((S, \Delta, w), \pi_{1}^{(1)}(X)\right) \tag{70}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} \operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}(X)\right) \\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} . \tag{71}\\
& \left(\operatorname{cost}\left(\left(S_{Q T}^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}(X)\right)+2 n \Delta_{D} \Delta_{Q T}\right) \tag{72}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} \text {. } \\
& \left(\operatorname{cost}\left(\left(S_{Q T}^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}\left(X^{*}\right)\right)+2 n \Delta_{D} \Delta_{Q T}\right) \tag{73}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} \text {. } \\
& \left(\operatorname{cost}\left(\left(S^{\prime}, \Delta, w\right), \pi_{1}^{(2)} \circ \pi_{1}^{(1)}\left(X^{*}\right)\right)+4 n \Delta_{D} \Delta_{Q T}\right) \tag{74}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{4}}{1-\epsilon_{2}} \operatorname{cost}\left((S, \Delta, w), \pi_{1}^{(1)}\left(X^{*}\right)\right) \\
& +\frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} 4 n \Delta_{D} \Delta_{Q T} \tag{75}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{2}\right)\left(1+\epsilon_{1}^{(2)}\right)^{4}}{1-\epsilon_{2}} \operatorname{cost}\left(P^{\prime}, \pi_{1}^{(1)}\left(X^{*}\right)\right) \\
& +\frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} 4 n \Delta_{D} \Delta_{Q T} \tag{76}\\
& \leq \frac{\left(1+\epsilon_{1}^{(1)}\right)^{4}\left(1+\epsilon_{2}\right)\left(1+\epsilon_{1}^{(2)}\right)^{4}}{1-\epsilon_{2}} \operatorname{cost}\left(P, X^{*}\right) \\
& +\frac{\left(1+\epsilon_{1}^{(1)}\right)^{2}\left(1+\epsilon_{1}^{(2)}\right)^{2}}{1-\epsilon_{2}} 4 n \Delta_{D} \Delta_{Q T}, \tag{77}
\end{align*}
$$

where (72) and (74) are by (68) and the property that the coreset (S, Δ, w) constructed by sensitivity sampling satisfies $\sum_{q \in S} w(q)=n$ (the cardinality of $\left.P\right)^{8}$.
8. While the sensitivity sampling procedure in [11] only guarantees that $\mathbb{E}\left[\sum_{q \in S} w(q)\right]=n$ (expectation over S), a variation of this procedure proposed in [4] guarantees $\sum_{q \in S} w(q)=n$ deterministically. FSS based on the sampling procedure in [4] still generates an ϵ-coreset (with probability $\geq 1-\delta)$ with a constant cardinality (precisely, $O\left(\frac{k^{2}}{\epsilon^{6}} \log \left(\frac{1}{\delta}\right)\right)$.

