APPENDIX A PROOFS

A.1 Proof of Theorem 4.1:

Proof. For 1), let X^* denote the optimal *k*-means centers of *P*. Since **S** is an ϵ -coreset with probability $\geq 1 - \delta$ (Theorem 3.2), by Definition 3.2, the following holds with probability $\geq 1 - \delta$:

$$\cot(P, X) \leq \frac{1}{1 - \epsilon} \cot(\mathbf{S}, X) \leq \frac{1}{1 - \epsilon} \cot(\mathbf{S}, X^*)$$
$$\leq \frac{1 + \epsilon}{1 - \epsilon} \cot(P, X^*). \quad (25)$$

For 2), the cost of transferring (S, Δ, w) is dominated by the cost of transferring S. Since S lies in a d'-dimensional subspace spanned by the columns of $V^{(d')}$, it suffices to transmit the coordinates of each point in S in this subspace together with $V^{(d')}$. The former incurs a cost of $O(|S| \cdot d')$, and the latter incurs a cost of O(dd'). Plugging $d' = O(k/\epsilon^2)$ and $|S| = \tilde{O}(k^3/\epsilon^4)$ from Theorem 3.2 yields the overall communication cost as $O(dk/\epsilon^2)$.

A.2 Proof of Lemma 4.1

Proof. Let $\delta' = \delta/(2nk)$. By the JL Lemma (Lemma 3.1), there exists $d' = O(\epsilon^{-2}\log(1/\delta')) = O(\epsilon^{-2}\log(nk/\delta))$, such that every $x \in \mathbb{R}^d$ satisfies $||\pi(x)|| \approx_{1+\epsilon} ||x||$ with probability $\geq 1 - \delta'$. By the union bound, this implies that with probability $\geq 1 - \delta$, every $p - x_i$ for $p \in P$ and $x_i \in X \cup X^*$ satisfies $||\pi(p) - \pi(x_i)|| \approx_{1+\epsilon} ||p - x_i||$. Therefore, with probability $\geq 1 - \delta$,

$$\cot(\pi(P), \pi(X)) = \sum_{p \in P} \min_{x_i \in X} \|\pi(p) - \pi(x_i)\|^2$$
(26)
$$\leq \sum_{p \in P} \min_{x_i \in X} (1 + \epsilon)^2 \|p - x_i\|^2$$

$$= (1 + \epsilon)^2 \cot(P, X),$$
(27)

$$(26) \ge \sum_{p \in P} \min_{x_i \in X} \frac{1}{(1+\epsilon)^2} \|p - x_i\|^2 = \frac{1}{(1+\epsilon)^2} \operatorname{cost}(P, X).$$
(28)

Combining (27) and (28) proves (5). Similar argument will prove (6). $\hfill \Box$

A.3 Proof of Theorem 4.2

Proof. For 1), let X^* be the optimal *k*-means centers of *P* and $\mathbf{S}' := (S', \Delta, w)$ be generated in line 3 of Algorithm 1. With probability at least $(1 - \delta)^2$, π_1 satisfies (5, 6) and π_2 generates an ϵ -coreset. Thus, with probability at least $(1 - \delta)^2$,

$$\operatorname{cost}(P, X) \le (1 + \epsilon)^2 \operatorname{cost}(\pi_1(P), X') \tag{29}$$

$$\leq \frac{(1+\epsilon)^2}{1-\epsilon} \operatorname{cost}(\mathbf{S}', X') \tag{30}$$

$$\leq \frac{(1+\epsilon)^2}{1-\epsilon} \operatorname{cost}(\mathbf{S}', \pi_1(X^*)) \tag{31}$$

$$\leq \frac{(1+\epsilon)^3}{1-\epsilon} \operatorname{cost}(\pi_1(P), \pi_1(X^*))$$
 (32)

$$\leq \frac{(1+\epsilon)^3}{1-\epsilon} \operatorname{cost}(P, X^*), \tag{33}$$

where (29) is by (5) and that $\pi_1(X) = X'$, (30) is because **S**' is an ϵ -coreset of $\pi_1(P)$, (31) is because X' minimizes $\cot(\mathbf{S}', \cdot)$, (32) is again because **S**' is an ϵ -coreset of $\pi_1(P)$, and (33) is by (6).

For 2), the communication cost is dominated by transmitting S'. By Lemma 4.1, the dimension of P' is $d' = O(\epsilon^{-2}\log(nk/\delta)) = O(\epsilon^{-2}\log n)$. By Theorem 3.2, the cardinality of S' is $|S'| = O(k^3\epsilon^{-4}\log^2(k)\log(1/\delta))$. Moreover, points in S' lie in a \tilde{d} -dimensional subspace for $\tilde{d} = O(k/\epsilon^2)$. Thus, it suffices to transmit the coordinates of points in S' in the \tilde{d} -dimensional subspace and a basis of the subspace. Thus, the total communication cost is

$$O((|S'| + d')\tilde{d}) = O\left(\frac{k^4}{\epsilon^6}\log^2(k)\log(\frac{1}{\delta}) + \frac{k}{\epsilon^4}\log n\right)$$
$$= O\left(\frac{k\log n}{\epsilon^4}\right).$$
(34)

For 3), note that for a given projection matrix $\Pi \in \mathbb{R}^{d \times d'}$ such that $\pi_1(P) := A_P \Pi$, line 2 takes $O(ndd') = O(nd\epsilon^{-2}\log n)$ time, where we have plugged in $d' = O(\epsilon^{-2}\log n)$. By Theorem 3.2, line 3 takes time

$$O\left(\min(nd^{\prime 2}, n^2d^{\prime}) + \frac{nk}{\epsilon^2} \left(d^{\prime} + k\log(\frac{1}{\delta})\right)\right)$$
$$= O\left(\frac{n}{\epsilon^2} \left(\frac{\log^2 n}{\epsilon^2} + \frac{k\log n}{\epsilon^2} + k^2\log(\frac{1}{\delta})\right)\right).$$
(35)

Thus, the total complexity at the data source is:

$$O\left(\frac{n}{\epsilon^2} \left(\frac{\log^2 n}{\epsilon^2} + \frac{k \log n}{\epsilon^2} + d \log n + k^2 \log(\frac{1}{\delta})\right)\right)$$
$$= O\left(\frac{nd}{\epsilon^2} \log^2 n\right) = \tilde{O}\left(\frac{nd}{\epsilon^2}\right). \tag{36}$$

A.4 Proof of Lemma 4.2

Proof. The proof is analogous to that of Lemma 4.1. Let $\delta' = \delta/(2n'k)$. Then there exists $d' = O(\epsilon^{-2}\log(1/\delta')) = O(\epsilon^{-2}\log(n'k/\delta))$, such that every $x \in \mathbb{R}^d$ satisfies $\|\pi(x)\| \approx_{1+\epsilon} \|x\|$ with probability $\geq 1 - \delta'$. By the union bound, this implies that with probability $\geq 1 - \delta$, every $p \in S$ and $x_i \in X \cup X^*$ satisfy $\|\pi(p) - \pi(x_i)\| \approx_{1+\epsilon} \|p - x_i\|$. Therefore,

$$\begin{aligned}
\cost((\pi(S), \Delta, w), \pi(X)) &= \sum_{p \in S} w(p) \cdot \min_{x_i \in X} \|\pi(p) - \pi(x_i)\|^2 + \Delta \\
&\leq (1+\epsilon)^2 \left(\sum_{p \in S} w(p) \cdot \min_{x_i \in X} \|p - x_i\|^2 + \Delta \right) \\
&= (1+\epsilon)^2 \cost(\mathbf{S}, X),
\end{aligned} \tag{37}$$

$$(37) \geq \frac{1}{(1+\epsilon)^2} \left(\sum_{p \in S} w(p) \cdot \min_{x_i \in X} \|p - x_i\|^2 + \Delta \right)$$
$$= \frac{1}{(1+\epsilon)^2} \operatorname{cost}(\mathbf{S}, X), \tag{39}$$

which prove (7). Similar argument proves (8).

A.5 Proof of Theorem 4.3

Proof. For 1), let X^* be the optimal *k*-means centers of *P* and $\mathbf{S} := (S, \Delta, w)$ generated in line 2 of Algorithm 2. With probability at least $(1 - \delta)^2$, **S** is an ϵ -coreset of *P*, and π_1 satisfies (7, 8). Thus, with this probability,

$$\operatorname{cost}(P, X) \le \frac{1}{1 - \epsilon} \operatorname{cost}(\mathbf{S}, X) \tag{40}$$

$$\leq \frac{(1+\epsilon)^2}{1-\epsilon} \operatorname{cost}((S',\Delta,w),X') \tag{41}$$

$$\leq \frac{(1+\epsilon)^2}{1-\epsilon} \operatorname{cost}((S',\Delta,w),\pi_1(X^*))$$
(42)

$$\leq \frac{(1+\epsilon)^4}{1-\epsilon} \operatorname{cost}(\mathbf{S}, X^*) \tag{43}$$

$$\leq \frac{(1+\epsilon)^5}{1-\epsilon} \operatorname{cost}(P, X^*), \tag{44}$$

where (40) is because **S** is an ϵ -coreset of P, (41) is due to (7) (note that $\pi_1(S) = S'$ and $\pi_1(X) = X'$), (42) is because X' minimizes $cost((S', \Delta, w), \cdot)$, (43) is due to (8), and (44) is again because **S** is an ϵ -coreset of P.

For 2), note that by Theorem 3.2, the cardinality of S needs to be $n' = O(k^3 \epsilon^{-4} \log^2(k) \log(1/\delta))$. By Lemma 4.2, the dimension of S' needs to be $d' = O(\epsilon^{-2} \log(n'k/\delta))$. Thus, the cost of transmitting (S', Δ, w) , dominated by the cost of transmitting S', is

$$O(n'd') = O\left(\frac{k^3 \log^2 k}{\epsilon^6} \log(\frac{1}{\delta}) \left(\log k + \log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta})\right)\right)$$
$$= \tilde{O}\left(\frac{k^3}{\epsilon^6}\right).$$
(45)

For 3), we know from Theorem 3.2 that line 2 of Algorithm 2 takes time $O(\min(nd^2, n^2d) + nk\epsilon^{-2}(d + k\log(1/\delta)))$. Given a projection matrix $\Pi \in \mathbb{R}^{d \times d'}$ such that $\pi_1(S) := A_S \Pi$, line 3 takes time O(n'dd'). Thus, the total complexity at the data source is

$$O\left(\min(nd^2, n^2d) + \frac{k}{\epsilon^2}nd + \frac{k^2\log k}{\epsilon^2}n + \frac{k^3\log^3 k(\log k + \log(\frac{1}{\epsilon}))}{\epsilon^6}d\right)$$
$$= O\left(nd \cdot \min(n, d)\right).$$
(46)

A.6 Proof of Theorem 4.4

Proof. Let n' := |S|, d' be the dimension after $\pi_1^{(1)}$, and d'' be the dimension after $\pi_1^{(2)}$. Let X^* be the optimal *k*-means centers for *P*.

For 1), note that with probability $\geq (1 - \delta)^3$, $\pi_1^{(1)}$ and $\pi_1^{(2)}$ will preserve the *k*-means cost up to a multiplicative

factor of $(1 + \epsilon)^2$, and π_2 will generate an ϵ -coreset of P'. Thus, with this probability, we have

$$\cot(P, X) \le (1 + \epsilon)^2 \cot(P', \pi_1^{(1)}(X))$$
(47)

$$\leq \frac{(1+\epsilon)}{1-\epsilon} \operatorname{cost}((S,\Delta,w),\pi_1^{(1)}(X)) \tag{48}$$

$$\leq \frac{(1+\epsilon)^{2}}{1-\epsilon} \operatorname{cost}((S',\Delta,w),\pi_{1}^{(2)}\circ\pi_{1}^{(1)}(X)) \quad (49)$$

$$\leq \frac{(1+\epsilon)^4}{1-\epsilon} \operatorname{cost}((S',\Delta,w),\pi_1^{(2)} \circ \pi_1^{(1)}(X^*))$$
(50)

$$\leq \frac{(1+\epsilon)^{6}}{1-\epsilon} \operatorname{cost}((S,\Delta,w),\pi_{1}^{(1)}(X^{*}))$$
(51)

$$\leq \frac{(1+\epsilon)^{\ell}}{1-\epsilon} \operatorname{cost}(P', \pi_1^{(1)}(X^*)) \tag{52}$$

$$\leq \frac{(1+\epsilon)^9}{1-\epsilon} \operatorname{cost}(P, X^*), \tag{53}$$

where (47) is by Lemma 4.1, (48) is because (S, Δ, w) is an ϵ -coreset of P', (49) is by Lemma 4.2, (50) is because $\pi_1^{(2)} \circ \pi_1^{(1)}(X) = X'$, which is optimal in minimizing $\cot((S', \Delta, w), \cdot)$, (51) is by Lemma 4.2, (52) is because (S, Δ, w) is an ϵ -coreset of P', and (53) is by Lemma 4.1.

For 2), note that by Theorem 3.2, the cardinality of the coreset constructed by FSS is $n' = O(k^3 \log^2 k \epsilon^{-4} \log(1/\delta))$, which is independent of the dimension of the input dataset. Thus, the communication cost remains the same as that of Algorithm 2, which is $\tilde{O}(k^3/\epsilon^6)$.

For 3), note that the first JL projection $\pi_1^{(1)}$ takes O(ndd') time, where $d' = O(\log n/\epsilon^2)$ by Lemma 4.1, and the second JL projection $\pi_1^{(2)}$ takes O(n'd'd'') time, where n' is specified by Theorem 3.2 as above and $d'' = O(\epsilon^{-2}\log(n'k/\delta))$ by Lemma 4.2. Moreover, from the proof of Theorem 4.2, we know that applying FSS after a JL projection takes $O(\frac{n}{\epsilon^2}(\log^2 n/\epsilon^2 + k \log n/\epsilon^2 + k^2 \log \frac{1}{\delta}))$ time. Thus, the total complexity at the data source is

$$O\left(ndd' + \frac{n}{\epsilon^2} \left(\frac{\log^2 n}{\epsilon^2} + \frac{k\log n}{\epsilon^2} + k^2\log\frac{1}{\delta}\right) + n'd'd''\right)$$
$$= O\left(\frac{nd\log n}{\epsilon^2} + \frac{n\log^2 n}{\epsilon^4}\right) = \tilde{O}\left(\frac{nd}{\epsilon^2}\right).$$
(54)

A.7 Proof of Theorem 5.3

(

Proof. For 1), let $P := \bigcup_{i=1}^{m} P_i$, $\tilde{P} := \bigcup_{i=1}^{m} \tilde{P}_i$, and $\mathbf{S} := (S, 0, w)$ be the output of disSS. Let X^* be the optimal *k*-means centers of P. By Theorem 5.2, we know that with probability $\geq 1 - \delta$,

$$\cot(\tilde{P}, X) \leq \frac{1}{1 - \epsilon} \cot(\mathbf{S}, X) \leq \frac{1}{1 - \epsilon} \cot(\mathbf{S}, X^*)$$
$$\leq \frac{1 + \epsilon}{1 - \epsilon} \cot(\tilde{P}, X^*), \quad (55)$$

where the second inequality is because X is optimal for **S**. Moreover, by Theorem 5.1, we have

$$1 - \epsilon)\operatorname{cost}(P, X) - \Delta \le \operatorname{cost}(P, X), \tag{56}$$

$$\operatorname{cost}(P, X^*) \le (1 + \epsilon)\operatorname{cost}(P, X^*) - \Delta.$$
(57)

Combining (55, 56, 57) yields

$$(1 - \epsilon)\operatorname{cost}(P, X) - \Delta \leq \frac{1 + \epsilon}{1 - \epsilon} \cdot ((1 + \epsilon)\operatorname{cost}(P, X^*) - \Delta)$$
$$\leq \frac{(1 + \epsilon)^2}{1 - \epsilon}\operatorname{cost}(P, X^*) - \Delta, \quad (58)$$

which gives the desired approximation factor.

For 2), note that disPCA incurs a cost of $O(m \cdot$ $(k/\epsilon^2) \cdot d)$ for transmitting $O(k/\epsilon^2)$ vectors in \mathbb{R}^d from each of the m data sources, and disSS incurs a cost of $O\left(\frac{k}{\epsilon^2} \cdot (\epsilon^{-4}(\frac{k^2}{\epsilon^2} + \log \frac{1}{\delta}) + mk \log \frac{mk}{\delta})\right)$ for transmitting $O(\epsilon^{-4}(\frac{k^2}{\epsilon^2} + \log \frac{1}{\delta}) + mk \log \frac{mk}{\delta})$ vectors in $\mathbb{R}^{O(k/\epsilon^2)}$. For $d \gg m, k, 1/\epsilon$, and $1/\delta$, the total communication cost is dominated by the cost of disPCA.

For 3), as computing the local SVD at data source itakes $O(n_i d \cdot \min(n_i, d))$ time, the complexity of disPCA at the data sources is $O(nd \cdot \min(n, d))$. The complexity of disSS at data source i is dominated by the computation of bicriteria approximation of P_i , which takes $O(n_i t_2 k \log \frac{1}{\delta}) = O(n k^2 \epsilon^{-2} \log \frac{1}{\delta})$ according to [42]. For $\min(n, d) \gg m, k, 1/\epsilon$, and $1/\delta$, the overall complexity is dominated by that of disPCA.

A.8 Proof of Lemma 5.1

Proof. Let \tilde{P} be the projection of P using the principal components computed by disPCA. Then by Theorem 5.1, there exists $\Delta \geq 0$ such that

$$(1-\epsilon)\operatorname{cost}(P,X) \le \operatorname{cost}(P,X) + \Delta \le (1+\epsilon)\operatorname{cost}(P,X).$$
 (59)

Moreover, by Theorem 5.2, **S** is an ϵ -coreset of \tilde{P} with probability at least $1 - \delta$. Multiplying (59) by $1 - \epsilon$, we have

$$(1-\epsilon)^2 \operatorname{cost}(P,X) \le (1-\epsilon) \operatorname{cost}(\tilde{P},X) + (1-\epsilon)\Delta \quad (60)$$

$$\leq \operatorname{cost}(\mathbf{S}, X) + \Delta,$$
 (61)

where we can obtain (61) from (60) because **S** is an ϵ -coreset of P. Similarly, multiplying (59) by $1 + \epsilon$, we have

$$(1+\epsilon)^{2} \operatorname{cost}(P, X) \ge (1+\epsilon) \operatorname{cost}(\tilde{P}, X) + (1+\epsilon)\Delta$$
$$\ge \operatorname{cost}(\mathbf{S}, X) + \Delta. \tag{62}$$

Combining (61, 62) yields the desired bound.

A.9 Proof of Theorem 5.4

Proof. For 1), let \mathbf{S}' := $(\bigcup_{i=1}^m S'_i, \Delta, w)$, where $(\bigcup_{i=1}^{m} S'_{i}, 0, w)$ is the overall coreset constructed by line 3 of Algorithm 4, and Δ is a constant satisfying Lemma 5.1 for the input dataset $\{P'_i\}_{i=1}^m$ as in line 3 of Algorithm 4. Let $P := \bigcup_{i=1}^{m} P_i$, and X^* be the optimal k-means centers for *P*. Then with probability $\geq (1 - \delta)^2$, we have

$$\operatorname{cost}(P,X) \le (1+\epsilon)^2 \operatorname{cost}(\pi_1(P),X') \tag{63}$$

$$\leq \frac{(1+\epsilon)^2}{(1-\epsilon)^2} \operatorname{cost}(\mathbf{S}', X') \tag{64}$$

$$\leq \frac{(1+\epsilon)^2}{(1-\epsilon)^2} \operatorname{cost}(\mathbf{S}', \pi_1(X^*)) \tag{65}$$

$$\leq \frac{(1+\epsilon)^4}{(1-\epsilon)^2} \cot(\pi_1(P), \pi_1(X^*))$$
 (66)

$$\leq \frac{(1+\epsilon)^{6}}{(1-\epsilon)^{2}} \operatorname{cost}(P, X^{*}), \tag{67}$$

18

where (63) is by Lemma 4.1 (note that $\pi_1(X)$) = X'), (64) is by Lemma 5.1 (note that $cost(\mathbf{S}', X')$ = $cost((\bigcup_{i=1}^{m} S'_i, 0, w), X') + \Delta)$, (65) is because X' is optimal in minimizing $cost(\mathbf{S}', \cdot)$, (66) is again by Lemma 5.1, and (67) is again by Lemma 4.1.

For 2), only line 3 incurs communication cost. By Theorem 5.3, we know that applying BKLW to a distributed dataset $\{P'_i\}_{i=1}^m$ with dimension d' incurs a cost of $O(mkd'/\epsilon^2)$, and by Lemma 4.1, we know that d' = $O(\log n/\epsilon^2)$, which yields the desired result.

For 3), the JL projection at each data source incurs a complexity of $O(ndd') = O(nd \log n/\epsilon^2)$. By Theorem 5.3, applying BKLW incurs a complexity of $O(nd' \cdot \min(n, d')) =$ $O(n \log^2 n/\epsilon^4)$ at each data source. Together, the complexity is $O(\frac{nd}{\epsilon^2}\log n + \frac{n}{\epsilon^4}\log^2 n) = \tilde{O}(nd/\epsilon^4).$

A.10 Proof of Theorem 6.1

Proof. We only present the proof for Algorithm 3 with the incorporation of quantization, as the proofs for the other algorithms are similar. Consider a coreset (S, Δ, w) and a set of k-means centers X. If we quantize S into S_{QT} with a maximum quantization error of Δ_{QT} , then for each coreset point $q \in S$ and its quantized version $q' \in S_{QT}$, we have $||q - q'|| \leq \Delta_{QT}$. On the other hand, from [6], the *k*-means cost function is $2\Delta_D$ -Lipschitz-continuous, which yields $|\operatorname{cost}(q, X) - \operatorname{cost}(q', X)| \leq 2\Delta_D \Delta_{QT}$. Thus, the difference in the *k*-means cost between the original and the quantized coresets is bounded by

$$|\operatorname{cost}((S,\Delta,w),X) - \operatorname{cost}((S_{QT},\Delta,w),X)| \le 2\Delta_D \Delta_{QT} \sum_{q \in S} w(q), \quad (68)$$

as $cost((S, \Delta, w), X) = \sum_{q \in S} w(q) cost(q, X) + \Delta$.

Following the arguments in the proof of Theorem 4.4, we

$$\begin{aligned}
& \cos t(P, X) \\ &\leq (1 + \epsilon_1^{(1)})^2 \cos t(P', \pi_1^{(1)}(X)) \\ &\leq \frac{(1 + \epsilon_1^{(1)})^2}{1 - \epsilon_2} \cos t((S, \Delta, w), \pi_1^{(1)}(X)) \end{aligned} \tag{69}$$

$$\leq \frac{(1-\epsilon_2)}{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^2} \operatorname{cost}((S',\Delta,w),\pi_1^{(2)}\circ\pi_1^{(1)}(X))$$
(71)

$$\leq \frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^2}{1-\epsilon_2} \cdot (\operatorname{cost}((S'_{QT},\Delta,w),\pi_1^{(2)}\circ\pi_1^{(1)}(X)) + 2n\Delta_D\Delta_{QT}) \quad (72)$$

$$(1+\epsilon^{(1)})^2(1+\epsilon^{(2)})^2$$

$$\leq \frac{(1+\epsilon_{1}^{(1)})(1+\epsilon_{1}^{(1)})}{1-\epsilon_{2}} \cdot (\cot((S'_{QT},\Delta,w),\pi_{1}^{(2)}\circ\pi_{1}^{(1)}(X^{*})) + 2n\Delta_{D}\Delta_{QT}) \quad (73)$$

$$\leq \frac{(1+\epsilon_{1}^{(1)})^{2}(1+\epsilon_{1}^{(2)})^{2}}{1-\epsilon_{2}} \cdot (\cot((S'_{QT},\Delta,w),\pi_{1}^{(2)}\circ\pi_{1}^{(1)}(X^{*})) + 4n\Delta_{D}\Delta_{QT}) \quad (74)$$

$$\leq \frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^4}{1-\epsilon_2} \operatorname{cost}((S,\Delta,w),\pi_1^{(1)}(X^*))$$

$$+\frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^2}{1-\epsilon_2}4n\Delta_D\Delta_{QT}$$
(75)

$$\leq \frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_2)(1+\epsilon_1^{(2)})^4}{1-\epsilon_2} \operatorname{cost}(P',\pi_1^{(1)}(X^*)) + \frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^2}{1-\epsilon_2} 4n\Delta_D\Delta_{QT}$$
(76)
$$(1+\epsilon_1^{(1)})^4(1+\epsilon_2)(1+\epsilon_1^{(2)})^4$$
(76)

$$\leq \frac{(1+\epsilon_1^{-1})(1+\epsilon_2^{-1})(1+\epsilon_1^{-1})}{1-\epsilon_2} \operatorname{cost}(P, X^*) + \frac{(1+\epsilon_1^{(1)})^2(1+\epsilon_1^{(2)})^2}{1-\epsilon_2} 4n\Delta_D \Delta_{QT},$$
(77)

where (72) and (74) are by (68) and the property that the coreset (S, Δ, w) constructed by sensitivity sampling satisfies $\sum_{q \in S} w(q) = n$ (the cardinality of P)⁸.

8. While the sensitivity sampling procedure in [11] only guarantees that $\mathbb{E}[\sum_{q \in S} w(q)] = n$ (expectation over *S*), a variation of this procedure proposed in [4] guarantees $\sum_{q \in S} w(q) = n$ deterministically. FSS based on the sampling procedure in [4] still generates an ϵ -coreset (with probability $\geq 1-\delta$) with a constant cardinality (precisely, $O(\frac{k^2}{\epsilon^6}\log(\frac{1}{\delta}))$.