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APPENDIX A
PROOFS

A.1 Proof of Theorem 4.1:
Proof. For 1), let X∗ denote the optimal k-means centers
of P . Since S is an ε-coreset with probability ≥ 1 − δ
(Theorem 3.2), by Definition 3.2, the following holds with
probability ≥ 1− δ:

cost(P,X) ≤ 1

1− ε
cost(S, X) ≤ 1

1− ε
cost(S, X∗)

≤ 1 + ε

1− ε
cost(P,X∗). (25)

For 2), the cost of transferring (S,∆, w) is dominated by
the cost of transferring S. Since S lies in a d′-dimensional
subspace spanned by the columns of V (d′), it suffices to
transmit the coordinates of each point in S in this subspace
together with V (d′). The former incurs a cost of O(|S| · d′),
and the latter incurs a cost ofO(dd′). Plugging d′ = O(k/ε2)
and |S| = Õ(k3/ε4) from Theorem 3.2 yields the overall
communication cost as O(dk/ε2).

A.2 Proof of Lemma 4.1
Proof. Let δ′ = δ/(2nk). By the JL Lemma (Lemma 3.1),
there exists d′ = O(ε−2 log(1/δ′)) = O(ε−2 log(nk/δ)),
such that every x ∈ Rd satisfies ‖π(x)‖ ≈1+ε ‖x‖ with
probability ≥ 1 − δ′. By the union bound, this implies
that with probability ≥ 1 − δ, every p − xi for p ∈ P
and xi ∈ X ∪ X∗ satisfies ‖π(p) − π(xi)‖ ≈1+ε ‖p − xi‖.
Therefore, with probability ≥ 1− δ,

cost(π(P ), π(X)) =
∑
p∈P

min
xi∈X

‖π(p)− π(xi)‖2 (26)

≤
∑
p∈P

min
xi∈X

(1 + ε)2‖p− xi‖2

= (1 + ε)2cost(P,X), (27)

(26) ≥
∑
p∈P

min
xi∈X

1

(1 + ε)2
‖p− xi‖2

=
1

(1 + ε)2
cost(P,X). (28)

Combining (27) and (28) proves (5). Similar argument will
prove (6).

A.3 Proof of Theorem 4.2
Proof. For 1), let X∗ be the optimal k-means centers of P
and S′ := (S′,∆, w) be generated in line 3 of Algorithm 1.
With probability at least (1 − δ)2, π1 satisfies (5, 6) and π2

generates an ε-coreset. Thus, with probability at least (1 −
δ)2,

cost(P,X) ≤ (1 + ε)2cost(π1(P ), X ′) (29)

≤ (1 + ε)2

1− ε
cost(S′, X ′) (30)

≤ (1 + ε)2

1− ε
cost(S′, π1(X∗)) (31)

≤ (1 + ε)3

1− ε
cost(π1(P ), π1(X∗)) (32)

≤ (1 + ε)5

1− ε
cost(P,X∗), (33)

where (29) is by (5) and that π1(X) = X ′, (30) is because
S′ is an ε-coreset of π1(P ), (31) is because X ′ minimizes
cost(S′, ·), (32) is again because S′ is an ε-coreset of π1(P ),
and (33) is by (6).

For 2), the communication cost is dominated by trans-
mitting S′. By Lemma 4.1, the dimension of P ′ is d′ =
O(ε−2 log(nk/δ)) = O(ε−2 log n). By Theorem 3.2, the car-
dinality of S′ is |S′| = O(k3ε−4 log2(k) log(1/δ)). Moreover,
points in S′ lie in a d̃-dimensional subspace for d̃ = O(k/ε2).
Thus, it suffices to transmit the coordinates of points in S′

in the d̃-dimensional subspace and a basis of the subspace.
Thus, the total communication cost is

O((|S′|+ d′)d̃) = O

(
k4

ε6
log2(k) log(

1

δ
) +

k

ε4
log n

)
= O

(
k log n

ε4

)
. (34)

For 3), note that for a given projection matrix Π ∈
Rd×d

′
such that π1(P ) := APΠ, line 2 takes O(ndd′) =

O(ndε−2 log n) time, where we have plugged in d′ =
O(ε−2 log n). By Theorem 3.2, line 3 takes time

O

(
min(nd′2, n2d′) +

nk

ε2
(
d′ + k log(

1

δ
)
))

=O

(
n

ε2

( log2 n

ε2
+
k log n

ε2
+ k2 log(

1

δ
)
))

. (35)

Thus, the total complexity at the data source is:

O

(
n

ε2

( log2 n

ε2
+
k log n

ε2
+ d log n+ k2 log(

1

δ
)
))

=O

(
nd

ε2
log2 n

)
= Õ

(
nd

ε2

)
. (36)

A.4 Proof of Lemma 4.2

Proof. The proof is analogous to that of Lemma 4.1. Let
δ′ = δ/(2n′k). Then there exists d′ = O(ε−2 log(1/δ′)) =
O(ε−2 log(n′k/δ)), such that every x ∈ Rd satisfies
‖π(x)‖ ≈1+ε ‖x‖ with probability ≥ 1 − δ′. By the union
bound, this implies that with probability ≥ 1 − δ, every
p ∈ S and xi ∈ X∪X∗ satisfy ‖π(p)−π(xi)‖ ≈1+ε ‖p−xi‖.
Therefore,

cost((π(S),∆, w), π(X))

=
∑
p∈S

w(p) · min
xi∈X

‖π(p)− π(xi)‖2 + ∆ (37)

≤ (1 + ε)2

∑
p∈S

w(p) · min
xi∈X

‖p− xi‖2 + ∆


= (1 + ε)2cost(S, X), (38)

(37) ≥ 1

(1 + ε)2

∑
p∈S

w(p) · min
xi∈X

‖p− xi‖2 + ∆


=

1

(1 + ε)2
cost(S, X), (39)

which prove (7). Similar argument proves (8).
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A.5 Proof of Theorem 4.3

Proof. For 1), let X∗ be the optimal k-means centers of P
and S := (S,∆, w) generated in line 2 of Algorithm 2. With
probability at least (1 − δ)2, S is an ε-coreset of P , and π1

satisfies (7, 8). Thus, with this probability,

cost(P,X) ≤ 1

1− ε
cost(S, X) (40)

≤ (1 + ε)2

1− ε
cost((S′,∆, w), X ′) (41)

≤ (1 + ε)2

1− ε
cost((S′,∆, w), π1(X∗)) (42)

≤ (1 + ε)4

1− ε
cost(S, X∗) (43)

≤ (1 + ε)5

1− ε
cost(P,X∗), (44)

where (40) is because S is an ε-coreset of P , (41) is due to
(7) (note that π1(S) = S′ and π1(X) = X ′), (42) is because
X ′ minimizes cost((S′,∆, w), ·), (43) is due to (8), and (44)
is again because S is an ε-coreset of P .

For 2), note that by Theorem 3.2, the cardinality of S
needs to be n′ = O(k3ε−4 log2(k) log(1/δ)). By Lemma 4.2,
the dimension of S′ needs to be d′ = O(ε−2 log(n′k/δ)).
Thus, the cost of transmitting (S′,∆, w), dominated by the
cost of transmitting S′, is

O(n′d′) = O

(
k3 log2 k

ε6
log(

1

δ
)
(

log k + log(
1

ε
) + log(

1

δ
)
))

= Õ

(
k3

ε6

)
. (45)

For 3), we know from Theorem 3.2 that line 2 of
Algorithm 2 takes time O(min(nd2, n2d) + nkε−2(d +
k log(1/δ))). Given a projection matrix Π ∈ Rd×d

′
such that

π1(S) := ASΠ, line 3 takes time O(n′dd′). Thus, the total
complexity at the data source is

O

(
min(nd2, n2d)+

k

ε2
nd+

k2 log k

ε2
n+

k3log3k(log k+log( 1
ε ))

ε6
d

)
= O (nd ·min(n, d)) . (46)

A.6 Proof of Theorem 4.4

Proof. Let n′ := |S|, d′ be the dimension after π(1)
1 , and d′′

be the dimension after π(2)
1 . Let X∗ be the optimal k-means

centers for P .
For 1), note that with probability ≥ (1 − δ)3, π(1)

1 and
π

(2)
1 will preserve the k-means cost up to a multiplicative

factor of (1 + ε)2, and π2 will generate an ε-coreset of P ′.
Thus, with this probability, we have

cost(P,X) ≤ (1 + ε)2cost(P ′, π(1)
1 (X)) (47)

≤ (1 + ε)2

1− ε
cost((S,∆, w), π

(1)
1 (X)) (48)

≤ (1 + ε)4

1− ε
cost((S′,∆, w), π

(2)
1 ◦ π(1)

1 (X)) (49)

≤ (1 + ε)4

1− ε
cost((S′,∆, w), π

(2)
1 ◦ π(1)

1 (X∗)) (50)

≤ (1 + ε)6

1− ε
cost((S,∆, w), π

(1)
1 (X∗)) (51)

≤ (1 + ε)7

1− ε
cost(P ′, π(1)

1 (X∗)) (52)

≤ (1 + ε)9

1− ε
cost(P,X∗), (53)

where (47) is by Lemma 4.1, (48) is because (S,∆, w) is
an ε-coreset of P ′, (49) is by Lemma 4.2, (50) is because
π

(2)
1 ◦ π(1)

1 (X) = X ′, which is optimal in minimizing
cost((S′,∆, w), ·), (51) is by Lemma 4.2, (52) is because
(S,∆, w) is an ε-coreset of P ′, and (53) is by Lemma 4.1.

For 2), note that by Theorem 3.2, the cardinality of the
coreset constructed by FSS is n′ = O(k3 log2 kε−4 log(1/δ)),
which is independent of the dimension of the input dataset.
Thus, the communication cost remains the same as that of
Algorithm 2, which is Õ(k3/ε6).

For 3), note that the first JL projection π(1)
1 takes O(ndd′)

time, where d′ = O(log n/ε2) by Lemma 4.1, and the second
JL projection π(2)

1 takesO(n′d′d′′) time, where n′ is specified
by Theorem 3.2 as above and d′′ = O(ε−2 log(n′k/δ))
by Lemma 4.2. Moreover, from the proof of Theorem 4.2,
we know that applying FSS after a JL projection takes
O( nε2 (log2 n/ε2 +k log n/ε2 +k2 log 1

δ )) time. Thus, the total
complexity at the data source is

O

(
ndd′ +

n

ε2

( log2 n

ε2
+
k log n

ε2
+ k2 log

1

δ

)
+ n′d′d′′

)

= O

(
nd log n

ε2
+
n log2 n

ε4

)
= Õ

(
nd

ε2

)
. (54)

A.7 Proof of Theorem 5.3

Proof. For 1), let P :=
⋃m
i=1 Pi, P̃ :=

⋃m
i=1 P̃i, and S :=

(S, 0, w) be the output of disSS. Let X∗ be the optimal k-
means centers of P . By Theorem 5.2, we know that with
probability ≥ 1− δ,

cost(P̃ ,X) ≤ 1

1− ε
cost(S, X) ≤ 1

1− ε
cost(S, X∗)

≤ 1 + ε

1− ε
cost(P̃ ,X∗), (55)

where the second inequality is because X is optimal for S.
Moreover, by Theorem 5.1, we have

(1− ε)cost(P,X)−∆ ≤ cost(P̃ ,X), (56)

cost(P̃ ,X∗) ≤ (1 + ε)cost(P,X∗)−∆. (57)
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Combining (55, 56, 57) yields

(1− ε)cost(P,X)−∆ ≤ 1 + ε

1− ε
· ((1 + ε)cost(P,X∗)−∆)

≤ (1 + ε)2

1− ε
cost(P,X∗)−∆, (58)

which gives the desired approximation factor.
For 2), note that disPCA incurs a cost of O(m ·

(k/ε2) · d) for transmitting O(k/ε2) vectors in Rd from
each of the m data sources, and disSS incurs a cost
of O

(
k
ε2 · (ε

−4(k
2

ε2 + log 1
δ ) +mk log mk

δ )
)

for transmitting

O(ε−4(k
2

ε2 + log 1
δ ) + mk log mk

δ ) vectors in RO(k/ε2). For
d � m, k, 1/ε, and 1/δ, the total communication cost is
dominated by the cost of disPCA.

For 3), as computing the local SVD at data source i
takes O(nid · min(ni, d)) time, the complexity of disPCA
at the data sources is O(nd · min(n, d)). The complex-
ity of disSS at data source i is dominated by the com-
putation of bicriteria approximation of P̃i, which takes
O(nit2k log 1

δ ) = O(nk2ε−2 log 1
δ ) according to [42]. For

min(n, d) � m, k, 1/ε, and 1/δ, the overall complexity is
dominated by that of disPCA.

A.8 Proof of Lemma 5.1
Proof. Let P̃ be the projection of P using the principal
components computed by disPCA. Then by Theorem 5.1,
there exists ∆ ≥ 0 such that

(1−ε)cost(P,X)≤ cost(P̃ ,X)+∆≤ (1+ε)cost(P,X). (59)

Moreover, by Theorem 5.2, S is an ε-coreset of P̃ with
probability at least 1− δ. Multiplying (59) by 1− ε, we have

(1− ε)2cost(P,X) ≤ (1− ε)cost(P̃ ,X) + (1− ε)∆ (60)
≤ cost(S, X) + ∆, (61)

where we can obtain (61) from (60) because S is an ε-coreset
of P̃ . Similarly, multiplying (59) by 1 + ε, we have

(1 + ε)2cost(P,X) ≥ (1 + ε)cost(P̃ ,X) + (1 + ε)∆

≥ cost(S, X) + ∆. (62)

Combining (61, 62) yields the desired bound.

A.9 Proof of Theorem 5.4
Proof. For 1), let S′ := (

⋃m
i=1 S

′
i,∆, w), where

(
⋃m
i=1 S

′
i, 0, w) is the overall coreset constructed by line 3 of

Algorithm 4, and ∆ is a constant satisfying Lemma 5.1 for
the input dataset {P ′i}mi=1 as in line 3 of Algorithm 4. Let
P :=

⋃m
i=1 Pi, and X∗ be the optimal k-means centers for

P . Then with probability ≥ (1− δ)2, we have

cost(P,X) ≤ (1 + ε)2cost(π1(P ), X ′) (63)

≤ (1 + ε)2

(1− ε)2
cost(S′, X ′) (64)

≤ (1 + ε)2

(1− ε)2
cost(S′, π1(X∗)) (65)

≤ (1 + ε)4

(1− ε)2
cost(π1(P ), π1(X∗)) (66)

≤ (1 + ε)6

(1− ε)2
cost(P,X∗), (67)

where (63) is by Lemma 4.1 (note that π1(X) =
X ′), (64) is by Lemma 5.1 (note that cost(S′, X ′) =
cost((

⋃m
i=1 S

′
i, 0, w), X ′) + ∆), (65) is because X ′ is optimal

in minimizing cost(S′, ·), (66) is again by Lemma 5.1, and
(67) is again by Lemma 4.1.

For 2), only line 3 incurs communication cost. By
Theorem 5.3, we know that applying BKLW to a dis-
tributed dataset {P ′i}mi=1 with dimension d′ incurs a cost
of O(mkd′/ε2), and by Lemma 4.1, we know that d′ =
O(log n/ε2), which yields the desired result.

For 3), the JL projection at each data source incurs a
complexity of O(ndd′) = O(nd log n/ε2). By Theorem 5.3,
applying BKLW incurs a complexity of O(nd′ ·min(n, d′)) =
O(n log2 n/ε4) at each data source. Together, the complexity
is O(ndε2 log n+ n

ε4 log2 n) = Õ(nd/ε4).

A.10 Proof of Theorem 6.1

Proof. We only present the proof for Algorithm 3 with the
incorporation of quantization, as the proofs for the other
algorithms are similar. Consider a coreset (S,∆, w) and a
set of k-means centers X . If we quantize S into SQT with a
maximum quantization error of ∆QT , then for each coreset
point q ∈ S and its quantized version q′ ∈ SQT , we have
‖q − q′‖ ≤ ∆QT . On the other hand, from [6], the k-means
cost function is 2∆D-Lipschitz-continuous, which yields
|cost(q,X) − cost(q′, X)| ≤ 2∆D∆QT . Thus, the difference
in the k-means cost between the original and the quantized
coresets is bounded by

|cost((S,∆, w), X)− cost((SQT ,∆, w), X)|
≤ 2∆D∆QT

∑
q∈S

w(q), (68)

as cost((S,∆, w), X) =
∑
q∈S w(q)cost(q,X) + ∆.

Following the arguments in the proof of Theorem 4.4, we
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see that with probability ≥ (1− δ)3:

cost(P,X)

≤ (1 + ε
(1)
1 )2cost(P ′, π(1)

1 (X)) (69)

≤ (1 + ε
(1)
1 )2

1− ε2
cost((S,∆, w), π

(1)
1 (X)) (70)

≤ (1 + ε
(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
cost((S′,∆, w), π

(2)
1 ◦ π(1)

1 (X))

(71)

≤ (1 + ε
(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
·

(cost((S′QT ,∆, w), π
(2)
1 ◦ π(1)

1 (X)) + 2n∆D∆QT ) (72)

≤ (1 + ε
(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
·

(cost((S′QT ,∆, w), π
(2)
1 ◦ π(1)

1 (X∗)) + 2n∆D∆QT ) (73)

≤ (1 + ε
(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
·

(cost((S′,∆, w), π
(2)
1 ◦ π(1)

1 (X∗)) + 4n∆D∆QT ) (74)

≤ (1 + ε
(1)
1 )2(1 + ε

(2)
1 )4

1− ε2
cost((S,∆, w), π

(1)
1 (X∗))

+
(1 + ε

(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
4n∆D∆QT (75)

≤ (1 + ε
(1)
1 )2(1 + ε2)(1 + ε

(2)
1 )4

1− ε2
cost(P ′, π(1)

1 (X∗))

+
(1 + ε

(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
4n∆D∆QT (76)

≤ (1 + ε
(1)
1 )4(1 + ε2)(1 + ε

(2)
1 )4

1− ε2
cost(P,X∗)

+
(1 + ε

(1)
1 )2(1 + ε

(2)
1 )2

1− ε2
4n∆D∆QT , (77)

where (72) and (74) are by (68) and the property that the
coreset (S,∆, w) constructed by sensitivity sampling satis-
fies

∑
q∈S w(q) = n (the cardinality of P )8.

8. While the sensitivity sampling procedure in [11] only guarantees
that E[

∑
q∈S w(q)] = n (expectation over S), a variation of this proce-

dure proposed in [4] guarantees
∑
q∈S w(q) = n deterministically. FSS

based on the sampling procedure in [4] still generates an ε-coreset (with
probability≥ 1−δ) with a constant cardinality (precisely,O( k

2

ε6
log( 1

δ
)).


