APPENDIX A
PROOFS
A.1 Proof of Theorem 4.1:

Proof. For 1), let X* denote the optimal k-means centers
of P. Since S is an e-coreset with probability > 1 — §
(Theorem 3.2), by Definition 3.2, the following holds with
probability > 1 — 4:

cost(P, X) <

1 1
cost(S, X) < cost(S, X™)
— € — €

< 1 i— zcost(P, X*). (25

For 2), the cost of transferring (S, A, w) is dominated by
the cost of transferring S. Since S lies in a d’-dimensional
subspace spanned by the columns of V@), it suffices to
transmit the coordinates of each point in .S in this subspace
together with V(). The former incurs a cost of O(|S| - d'),
and the latter incurs a cost of O(dd’). Plugging d’ = O(k/€?)
and |S| = O(k®/e*) from Theorem 3.2 yields the overall

communication cost as O(dk/€?). O

A.2 Proof of Lemma 4.1

Proof. Let &' = 6/(2nk). By the JL Lemma (Lemma 3.1),
there exists d = O(e?log(1/6")) = O(e2log(nk/é)),
such that every x € R? satisfies ||7(7)|| =14 |z| with
probability > 1 — §’. By the union bound, this implies
that with probability > 1 — §, every p — x; for p € P

and z; € X U X* satisfies ||7(p) — w(x;)| =1+ lp — =il
Therefore, with probability > 1 — 6,
cost(m(P), (X)) = Z g Im(p) - n(z)|* (26)
< Z mln (14 €)2|lp — 4>
pEP 7€
= (1 + €)%cost(P, X), (27)
>3 min - P
- g wieX (1+¢€)?
1
= ———cost(P, X). 2
(1+€)2cos( , X) (28)
Combining (27) and (28) proves (5). Similar argument will
prove (6). O

A.3 Proof of Theorem 4.2

Proof. For 1), let X* be the optimal k-means centers of P
and S’ := (5, A, w) be generated in line 3 of Algorithm 1.
With probability at least (1 — §)2, 7 satisfies (5, 6) and 72
generates an e-coreset. Thus, with probability at least (1 —

5)?,

cost(P, X) < (14 €)?cost(m (P), X') (29)
(1+¢)? Y
< e cost(S’, X") (30)
< (1 t?Qcost(S’,ﬂ'l(X*)) (31)
(1+¢)° '
< D cost(m(P),m(X7) (32)
5
< (1;:) cost(P, X*), (33)
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where (29) is by (5) and that 71 (X) = X’, (30) is because
S’ is an e-coreset of m1(P), (31) is because X' minimizes
cost(S’, ), (32) is again because S’ is an e-coreset of 71 (P),
and (33) is by (6).

For 2), the communication cost is dominated by trans-
mitting S’. By Lemma 4.1, the dimension of P’ is d' =
O(e 21og(nk/8)) = O(e 2logn). By Theorem 3.2, the car-
dinality of §" is [S'| = O(k®e™* log?(k )log(1/6)). Moreover,
points in S’ lie in a d-dimensional subspace for d = O(k/€?).
Thus, it suffices to transmit the coordinates of points in .S’
in the d-dimensional subspace and a basis of the subspace.
Thus, the total communication cost is

k
a log n)

(34)

B 4
O((|S"| 4+ d')d) = O (% log? (k) log(%) +

For 3), note that for a given projection matrix II €
R4 such that m (P) := Apll, line 2 takes O(ndd')
O(nde?logn) time, where we have plugged in d =
O(e‘2 logn). By Theorem 3.2, line 3 takes time

Lav —&-k;log(%)))

@) (min(nd’Q, n?d’) +

log®n k:logn 2] 1
—0 <62( o+ + k%1 (5)) . )
Thus, the total complexity at the data source is:
n slogn  k 1og n 9
O(eQ( 2 + +dlogn+k log(é))
~ (nd
=0 (— log? n) =0 (—2) . (36)
€
O

A.4 Proof of Lemma 4.2

Proof. The proof is analogous to that of Lemma 4.1. Let
§ = §/(2n’k). Then there exists d = O(e~2log(1/8")) =
O(e %log(n'k/d)), such that every z € R? satisfies
|7 (z)|| ~14e ||| with probability > 1 — §’. By the union
bound, this implies that with probability > 1 — §, every
p € Sandx; € XUX* satisfy ||7(p) —m(z:)|| ®14c [|p—zi.-

Therefore,
cost((m(S), A, w), 7(X))
= > w(p) - min [[w(p) - w(x)|* + A (37)
pES
< (1+¢)? (Z w(p) - min [lp —z:]* + A)
peS ‘
= (1 + €)%cost(S, X), (38)
1
(37) > w(p) - min [|p — x> + A
(1 + ) (I;, z,€X )
_ ﬁcost(S,X), (39)

which prove (7). Similar argument proves (8). O



A.5 Proof of Theorem 4.3

Proof. For 1), let X* be the optimal k-means centers of P
and S := (5, A, w) generated in line 2 of Algorithm 2. With
probability at least (1 — §)?, S is an e-coreset of P, and m;
satisfies (7, 8). Thus, with this probability,

cost(P, X) < liecost(S,X) (40)
L tefcost((s’,A,w),X’) (41)
< %cost((é", Aw),m(XY) (42
< L (s, ) (@3)
< WP ap X, (44)

where (40) is because S is an e-coreset of P, (41) is due to
(7) (note that 1 (S) = S’ and m (X) = X’), (42) is because
X' minimizes cost((S’, A, w), -), (43) is due to (8), and (44)
is again because S is an e-coreset of P.

For 2), note that by Theorem 3.2, the cardinality of S
needs to be n’ = O(k®¢*log?(k)log(1/4)). By Lemma 4.2,
the dimension of S’ needs to be d' = O(e~2log(n'k/?)).
Thus, the cost of transmitting (S’, A, w), dominated by the
cost of transmitting S’, is

k3log® k 1 1 1

gl — —
O(nd)—0<6 log((s)(longrlog(e)+log(§))>

- (k3

=0().
For 3), we know from Theorem 3.2 that line 2 of
Algorithm 2 takes time O(min(nd? n%d) + nke2(d +
klog(1/6))). Given a projection matrix IT € R**?" such that

m1(S) 1= AgIl, line 3 takes time O(n'dd’). Thus, the total
complexity at the data source is

(45)

k. k2logk  k®log®k(log k-+log(L
O(min(nd% n2d)+ ndt 8t L8 (0g6 (),
€ € €

= O (nd - min(n, d)) . (46)

O

A.6 Proof of Theorem 4.4

|S|, d’ be the dimension after 7751), and d”’

Proof. Let n’ :=
). Let X* be the optimal k-means

be the dimension after 77&2
centers for P.

For 1), note that with probability > (1 — §)3, 7r§1) and
7r§2) will preserve the k-means cost up to a multiplicative
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factor of (1 + €)%, and o will generate an e-coreset of P’.
Thus, with this probability, we have

cost(P, X) < (1 4 ¢)*cost(P’ (1)(X)) (47)
< (1 _E) cost((S, A, w), (1)(X)) (48)
(1+¢)* : @ (D) y
< e cost((S", A, w), m™ om (X)) (49)
< (11t€€4cost((5’, A w), T @) 5 ng)( X)) (50)
< LV (s aw).n D) 6D
7
< W cost(, af) )
9
< Mcost(P,X*), (53)

where (47) is by Lemma 4.1, (48) is because (S, A,w) is
an e-coreset of P/, (49) is by Lemma 4.2, (50) is because
7T§2) o ng)( X) = X', which is optimal in minimizing
cost((S’, A,w),-), (51) is by Lemma 4.2, (52) is because
(S, A, w) is an e-coreset of P’, and (53) is by Lemma 4.1.

For 2), note that by Theorem 3.2, the cardmahty of the
coreset constructed by FSS is n’ = O(k? log? ke *log(1/9)),
which is independent of the dimension of the input dataset.
Thus, the communication cost remains the same as that of
Algorithm 2, which is O(k3/€5).

For 3), note that the first JL projection 7r§1) takes O(ndd’)
time, where d’ = O(log n/e?) by Lemma 4.1, and the second
JL projection 7r§2) takes O(n'd'd") time, where n’ is specified
by Theorem 3.2 as above and d”’ = O(e 2log(n'k/s))
by Lemma 4.2. Moreover, from the proof of Theorem 4.2,
we know that applying FSS after a JL projection takes
O(% (log® n/e® + klogn/e* 4 k2 log 1)) time. Thus, the total
complex1ty at the data source is

1 k1
0 (ndd’ 2( Oi N 5) + n’d’d”)

1 log? ~
:O<nd(2)gn+n0§ n>:O<nzd)
€ € €

(54)

O

A.7 Proof of Theorem 5.3
Proof. For 1), let P := ", P, P :== U, P;, and S :=
(S,0,w) be the output of disSS. Let X* be the optimal k-

means centers of P. By Theorem 5.2, we know that with
probability > 1 — 4,

~ 1 1
cost(P, X) < — 6cos’c(S7X) — ecost(S, X*)

IN

+ 6cos’c(]s7 X*), (55)
—€

where the second inequality is because X is optimal for S.
Moreover, by Theorem 5.1, we have

(1 —€)cost(P, X) —
cost(P, X*) < (1 + €)cost(P, X*) —

A < cost(P, X),
A.

(56)
(57)



Combining (55, 56, 57) yields

(1 - €)cost(P, X) — A < 1 fz (1 + €)cost(P, X*) — A)
< +€>2cost(P,X*) “A, (58

—€
which gives the desired approximation factor.

For 2), note that disPCA incurs a cost of O(m
(k/€?) - d) for transmitting O(k/e?) vectors in R? from
each of the m data sources, and disSS incurs a cost
of O (6% . (6_4(’:—5 +log ) + mklog mTk)) for transmitting

0(674(]:—22 + log #) + mklog Z£) vectors in RO®*/<) For
d > m,k,1/e, and 1/4, the total communication cost is
dominated by the cost of disPCA.

For 3), as computing the local SVD at data source i
takes O(n;d - min(n,,d)) time, the complexity of disPCA
at the data sources is O(nd - min(n,d)). The complex-
ity of disSS at data source i is dominated by the com-
putation of bicriteria approximation of P;, which takes
O(nitsklog ) = O(nk*¢?log }) according to [42]. For
min(n,d) > m,k,1/¢, and 1/, the overall complexity is
dominated by that of disPCA. O

A.8 Proof of Lemma 5.1

Proof. Let P be the projection of P using the principal
components computed by disPCA. Then by Theorem 5.1,

there exists A > 0 such that
(1—€)cost(P, X) < cost(P, X)+A < (1+€)cost(P, X). (59)

Moreover, by Theorem 5.2, S is an e-coreset of P with

probability at least 1 — §. Multiplying (59) by 1 — ¢, we have
(1 —€)2cost(P, X) < (1 — €)cost(P, X) + (1 —e)A  (60)
< cost(S, X) + A, (61)

where we can obtain (61) from (60) because S is an e-coreset
of P. Similarly, multiplying (59) by 1 + ¢, we have

(1 + €)%cost(P, X) > (1 + €)cost(P, X) + (1 + €)A
> cost(S, X) + A. (62)
Combining (61, 62) yields the desired bound. O

A.9 Proof of Theorem 5.4

Proof. For 1), let S := (UX;S,A,w), where
(Ui, S7,0,w) is the overall coreset constructed by line 3 of
Algorithm 4, and A is a constant satisfying Lemma 5.1 for
the mput dataset {P/}7, as in line 3 of Algorithm 4. Let
P =", P,and X* be the optimal k-means centers for
P. Then with probability > (1 — §)?, we have

cost(P, X) < (1 + €)*cost(m (P), X') (63)
2
< Eiti;Qcost(S',X/) (64)
< 8 t i;zcost(S’, (X)) (65)
(L+e)° .
< = 6)2cost(7r1 (P),m(X™)) (66)
< 8 J_r 32 cost(P, X™), (67)
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where (63) is by Lemma 4.1 (note that m(X) =
X'), (64) is by Lemma 5.1 (note that cost(S’,X’) =
cost((Ui%, S1,0,w), X') + A), (65) is because X’ is optimal
in minimizing cost(S’,-), (66) is again by Lemma 5.1, and
(67) is again by Lemma 4.1.

For 2), only line 3 incurs communication cost. By
Theorem 5.3, we know that applying BKLW to a dis-
tributed dataset {P/}!”; with dimension d' incurs a cost
of O(mkd'/€?), and by Lemma 4.1, we know that d' =
O(logn/€?), which yields the desired result.

For 3), the JL projection at each data source incurs a
complexity of O(ndd') = O(ndlogn/e?). By Theorem 5.3,
apply1n§ BKLW incurs a complexity of O(nd’-min(n,d’)) =

O(nlog” n/e) at each data source. Together, the complexity
is O(% logn + % log”n) = O(nd/e"). O

A.10 Proof of Theorem 6.1

Proof. We only present the proof for Algorithm 3 with the
incorporation of quantization, as the proofs for the other
algorithms are similar. Consider a coreset (S, A,w) and a
set of k-means centers X. If we quantize S into Sgr with a
maximum quantization error of Agr, then for each coreset
point ¢ € S and its quantized version ¢’ € Sgr, we have
llg — ¢'|| < Agr. On the other hand, from [6], the k-means
cost function is 2A p-Lipschitz-continuous, which yields
|cost(g, X) — cost(q’, X)| < 2ApAgr. Thus, the difference
in the k-means cost between the original and the quantized
coresets is bounded by

|cost((S, A, w), X) — cost((Sor, A, w), X)|

< 2ApAqr Y w(g),

q€eS

(68)

as cost((S, A, w), X) =37 c g w(g)cost(q, X) + A.

Following the arguments in the proof of Theorem 4.4, we



see that with probability > (1 — )

cost(P, X)
<(1+ egl))Qcost(P’7 ﬂl)(X)) (69)
(1)y2
1
< (iké)cost((s,A,w),ﬂl)(X)) (70)
e
(1)y2 (2)y2
1 1
< fq Jare) cost((S', A, w), 7 o 7V (X))

1-— €9
(71)

1 2
_a+a2a+ )

1— €2
(cost((Siyps A, w), w2 o 1{V (X)) + 2nApAgr) (72)
_ 146"+ g")

1— €9
(COS‘L‘((S&?T, A, w),ﬂ'f) o W%l)(X*)) +2nApAgr) (73)
_ a2+

1-— €2
(cost((S", A, w), w2 o mV(X*)) + 4nApAgr)  (74)
_ a2+

cost((S, A, w), ng) (X™))
1-— €2

(L+ )1+ 47
1-— €2
_ 0+ 6?1+ e) (147

4TLAD AQT (75)

cost(P’, 7r§1)(X*))

1-— €2
(L+6")%1+67)?
1— €9
1+ €)1 + ) (1 + €2
1-— €92
(L4 67201+ )
1-— €9
where (72) and (74) are by (68) and the property that the

coreset (S, A, w) constructed by sensitivity sampling satis-
fies 3,5 w(q) = n (the cardinality of P)®. O

477,ADAQT (76)

<

cost(P, X™)

47’ZAD AQT7 (77)

8. While the sensitivity sampling procedure in [11] only guarantees
that E[>° s w(q)] = n (expectation over ), a variation of this proce-
dure proposed in [4] guarantees 3 - g w(g) = n deterministically. FSS
based on the sampling procedure in [4] still generates an e-coreset (with

probability > 1—¢) with a constant cardinality (precisely, O( ’:—z log(%)).

19



