
1

Communication-efficient k-Means for
Edge-based Machine Learning

Hanlin Lu, Student Member, IEEE, Ting He, Senior Member, IEEE, Shiqiang Wang, Member, IEEE,
Changchang Liu, Mehrdad Mahdavi, Vijaykrishnan Narayanan, Fellow, IEEE,

Kevin S. Chan, Senior Member, IEEE, and Stephen Pasteris

Abstract—We consider the problem of computing the k-means centers for a large high-dimensional dataset in the context of
edge-based machine learning, where data sources offload machine learning computation to nearby edge servers. k-Means
computation is fundamental to many data analytics, and the capability of computing provably accurate k-means centers by leveraging
the computation power of the edge servers, at a low communication and computation cost to the data sources, will greatly improve the
performance of these analytics. We propose to let the data sources send small summaries, generated by joint dimensionality reduction
(DR), cardinality reduction (CR), and quantization (QT), to support approximate k-means computation at reduced complexity and
communication cost. By analyzing the complexity, the communication cost, and the approximation error of k-means algorithms based
on carefully designed composition of DR/CR/QT methods, we show that: (i) it is possible to compute near-optimal k-means centers at a
near-linear complexity and a constant or logarithmic communication cost, (ii) the order of applying DR and CR significantly affects the
complexity and the communication cost, and (iii) combining DR/CR methods with a properly configured quantizer can further reduce
the communication cost without compromising the other performance metrics. Our theoretical analysis has been validated through
experiments based on real datasets.

Index Terms—k-Means, dimensionality reduction, coreset, random projection, quantization, edge-based machine learning.

F

1 INTRODUCTION

EDGE-based machine learning [2] is an emerging appli-
cation scenario, where mobile/wireless devices collect

data and transmit them (or their summaries) to nearby edge
servers for processing. Compared to alternative approaches,
e.g., transmitting locally learned model parameters as in
federated learning [3], transmitting data summaries has the
advantages that: (i) only one round of communications is
required,1 (ii) the transmitted data can potentially be used to
compute other machine learning models [5], [6], and (iii) the
edge server can solve the machine learning problem closer
to the optimality than the data-collecting devices within the
same time. In this work, we focus on k-means clustering
under the framework of edge-based machine learning.

k-Means clustering is one of the most widely-used ma-
chine learning techniques. Algorithms for k-means are used
in many areas of data science, e.g., for data compression,
quantization, hashing; see the survey in [7] for more details.
Recently, it was shown in [5], [6] that the centers of k-

• H. Lu, T. He, M. Mahdavi, and V. Narayanan are with Pennsylvania State
University, University Park, PA 16802, USA (email: {hzl263, tzh58,
mzm616, vxn9}@psu.edu).

• S. Wang and C. Liu are with IBM T. J. Watson Research Cen-
ter, Yorktown Heights, NY 10598, USA (email: {wangshiq@us.,
Changchang.Liu33@}ibm.com).

• K. Chan is with Army Research Laboratory, Adelphi, MD 20783, USA
(email: kevin.s.chan.civ@mail.mil).

• S. Pasteris is with University College London, London WC1E 6EA, UK
(email: s.pasteris@cs.ucl.ac.uk).

A preliminary version of this work was presented at ICDCS’20. [1].
1. In cases that the raw data are spread over multiple nodes, another

round of communications is needed to decide the sizes of data sum-
maries to collect from each node [4]. However, each node only sends
one scalar in this round and hence the communication cost is negligible.

means can be used as a proxy of the original dataset in
computing a broader set of machine learning models with
sufficiently continuous cost functions. Thus, efficient and
accurate computation of k-means can bring broad benefits
to machine learning applications.

However, solving k-means is nontrivial. The problem
is known to be NP-hard, even for two centers [8] or in
the plane [9]. Due to its fundamental importance, how to
speed up the k-means computation for large datasets has
received significant attention. Most existing solutions can be
classified into two approaches: dimensionality reduction (DR)
methods that aim at generating a “thinner” dataset with a
reduced number of attributes [10], and cardinality reduction
(CR) methods that aim at generating a “smaller” dataset
with a reduced number of data points (i.e., samples) [11].
However, these solutions assumed that the full dataset is
available locally at the server that performs k-means com-
putation, and hence ignored the communication cost.

To our knowledge, we are the first to explicitly analyze
the communication cost in computing k-means over remote
and possibly distributed data. The need of communications
arises in the application scenario of edge-based machine
learning, where edge devices collecting data wish to offload
machine learning computation to nearby edge servers
through wireless links. Given a large high-dimensional
dataset, i.e., n, d� 1 (n: cardinality, d: dimension), residing
at one or multiple data sources at the network edge, an
obvious solution of solving k-means at the data sources
and sending the centers to the server will incur a high
computational complexity at the data sources that is not
suitable for the limited computation power of edge devices,
while another obvious solution of sending the raw data

2

to the server and solving k-means there will incur a high
communication cost that imposes too much stress on the
wireless links. We seek to achieve a better tradeoff by letting
the data sources send small data summaries generated by
efficient data reduction methods and leaving the k-means
computation to the server.

Besides DR and CR, quantization (QT) [12] can also
reduce the communication cost by representing each data
point with a smaller number of bits. While k-means itself
has been used to design vector quantizers [13], we will
show that simpler quantizers can be combined with DR/CR
methods to compute approximate k-means at an even lower
communication cost without negatively affecting the com-
plexity or the quality of solution.

1.1 Summary of Contributions
We want to develop efficient k-means algorithms suitable
for edge-based machine learning, by offloading as much
computation as possible to edge servers at a low communi-
cation cost to data sources. Our contributions include:

1) If the data reside at a single data source, we show
that (i) it is possible to solve k-means arbitrarily close to
the optimal with constant communication cost and near-
linear complexity at the data source by combining suitably
selected DR/CR methods, (ii) the order of applying DR and
CR methods will not affect the approximation error, but
will lead to different tradeoffs between communication cost
and computational complexity, and (iii) repeating DR both
before and after CR can further improve the performance.

2) If the data are distributed over multiple data sources,
we show that suitably combining DR/CR methods can solve
k-means arbitrarily close to the optimal with near-linear
complexity at the data sources and a total communication
cost that is logarithmic in the data size.

3) We further extend our solution to include
quantization. Using the rounding-based quantizer as an
example, we demonstrate how to configure the quantizer
to minimize the communication cost while guaranteeing a
given approximation error.

4) Through experiments on real datasets, we verify that
(i) joint DR and CR can drastically reduce the communica-
tion cost without incurring a high complexity at the data
sources or significantly degrading the solution quality, (ii)
the proposed joint DR-CR algorithms can achieve a solution
quality similar to state-of-the-art algorithms while notably
reducing the communication cost and the complexity, and
(iii) combining DR/CR with quantization can further reduce
the communication cost without compromising the other
performance metrics.

Roadmap. Sections 2–3 review the background on
DR/CR methods. Section 4 presents our results on joint
DR/CR in the centralized setting, and Section 5 presents
those in the distributed setting. Section 6 presents further
improvement via joint DR, CR, and quantization. Section 7
evaluates our solutions on real datasets. Finally, Section 8
concludes the paper. Proofs are given in Appendix.

2 RELATED WORK

Our work belongs to the studies on data reduction for
approximate k-means. Existing solutions can be classified
into the following categories:

Dimensionality reduction (DR): DR for k-means, initi-
ated by [14], aims at speeding up k-means by reducing the
number of features (i.e., the dimension). Two approaches
have been proposed: 1) feature selection that selects a sub-
set of the original features, and 2) feature extraction that
constructs a smaller set of new features. For feature selec-
tion, the best known algorithms are from [15], including
a random sampling algorithm that achieves a (1 + ε)-
approximation using O(k log k/ε2) features, and a deter-
ministic algorithm that achieves a (1 + ε)-approximation
using O(k/ε2) features. For feature extraction, there are two
methods with guaranteed approximation, both based on lin-
ear projections. The first method is based on principal compo-
nent analysis (PCA) via computing the singular value decompo-
sition (SVD), where exact SVD gives 2-approximation using
k features [16] or (1+ε)-approximation using dk/εe features
[15], and approximate SVD gives (2 + ε)-approximation
using k features [17] or (1 + ε)-approximation using dk/εe
features [15]. The second method is based on random pro-
jections that preserve vector `-2 norms with an arbitrar-
ily high probability, whose existence is guaranteed by the
Johnson-Lindenstrauss (JL) lemma [18]. The best known al-
gorithm there is given by [10], which achieves a (1 + ε)-
approximation using O(log(k/ε)/ε2) features.

Cardinality reduction (CR): CR for k-means, initiated
by [19], aims at using a small weighted set of points in the
same space, referred to as a coreset, to replace the original
dataset. A coreset is called an ε-coreset (for k-means) if it
can approximate the k-means cost of the original dataset
for every candidate set of centers up to a factor of 1 ± ε.
Many coreset construction algorithms have been proposed
for k-means. Early algorithms use geometric partitions to
merge each group of nearby points into a single coreset
point [19], [20], [21], which cause the cardinality of the
coreset to be exponential in the dimension d. Later, [22]
showed that sampling can be used to reduce the coreset
cardinality to a polynomial in k, ε, log n, and d. Most state-
of-the-art coreset construction algorithms are based on the
sensitivity sampling framework that was first proposed in
[23] and then formalized in [24]. To generate an ε-coreset,
the solution in [24] needs a coreset cardinality of2 Õ(kdε−4),
and its followup in [25] needs Õ(k2dε−2). The best known
solution3 is the one in [11] (presented implicitly in the proof
of Theorem 36), which showed that by reducing the intrinsic
dimension of the dataset and adding a constant term to
the coreset-based cost, the cardinality of an ε-coreset can
be reduced to Õ(k3ε−4).

Joint DR-CR: Among the above works, only [11], [27]
considered joint DR and CR for k-means computation.

Algorithms in the distributed setting: In this setting,
[4] proposed a distributed version of sensitivity sampling
to construct an ε-coreset over a distributed dataset, and
[27] further combined this algorithm with a distributed
PCA algorithm from [11]. Besides these theoretical results,
there are also system works on adapting centralized k-
means algorithms for distributed settings, e.g., MapReduce

2. We use Õ(x) to denote a value that is at most linear in x times a
factor that is polylogarithmic in x.

3. There is another algorithm with a coreset cardinality independent
of n and d (precisely, kO(ε−2)) in [26]. However, the algorithm has a
high complexity and the coreset cardinality is larger than that in [11].

3

[28], sensor networks [29], and Peer-to-Peer networks [30].
However, these algorithms are only heuristics.

Limitations & improvements: While extensively studied,
existing solutions mainly focused on reducing the compu-
tation time, leaving open the issue of communication cost.
Moreover, we note that: (i) the state-of-the-art data reduc-
tion methods [11], [27] blindly assumed that DR should
be applied before CR, leaving open whether it is possible
to achieve better performance by reversing the order of
DR/CR or applying them repeatedly, and (ii) most of the
algorithms for the distributed setting are heuristics without
guarantees on how well their solutions approximate the
optimal solution. To fill this gap, we will perform a com-
prehensive analysis in terms of computational complexity,
communication cost, and approximation error, while care-
fully designing the order of applying DR/CR. In addition
to DR and CR, QT [12] is also an effective method for
reducing the communication cost by lowering the data
precision. While k-means itself has been used to design
certain quantizers [13], the use of simpler quantizers for
communication-efficient k-means computation has not been
studied before. In this regard, we will show how to properly
combine a simple rounding-based quantizer with DR/CR
methods to further reduce the communication cost without
compromising the other performance metrics.

3 BACKGROUND AND FORMULATION

We start with an overview of existing results on DR and CR
for k-means, followed by our problem statement.

3.1 Notations & Definitions
Definitions: Consider a dataset P ⊂ Rd with cardinality
n that resides at one or multiple data sources (i.e., data-
collecting devices), where both n � 1 and d � 1. We want
to find, with assistance of an edge server, the k points X =
{xi}ki=1 that minimize the following cost function4:

cost(P,X) :=
∑
p∈P

min
xi∈X

‖p− xi‖2. (1)

This is the k-means clustering problem, and the points in
X are called centers. Equivalently, the k-means clustering
problem can be considered as the problem of finding the
partition P = {P1, . . . , Pk} of P into k clusters that mini-
mizes the following cost function:

cost(P) :=
k∑
i=1

min
xi∈Rd

∑
p∈Pi

‖p− xi‖2. (2)

Notations: We will use ‖x‖ to denote the `-2 norm if x is
a vector, or the Frobenius norm if x is a matrix. We will use
AP ∈ Rn×d to denote the matrix representation of a dataset
P ⊂ Rd, where each row corresponds to a data point. Let
µ(P) denote the optimal 1-means center of P , which is well-
known to be the sample mean, i.e., µ(P) = 1

|P |
∑
p∈P p. Let

PP,X denote the partition of dataset P induced by centers
X , i.e., PP,X = {P1, . . . , P|X|} for Pi := {p ∈ P : ‖p−xi‖ ≤
‖p − xj‖, ∀xj ∈ X \ {xi}} (ties broken arbitrarily). Given
scalars x, y, and ε (ε > 0), we will use x ≈1+ε y to denote

4. The norms in (1) and (2) refer to the `-2 norm.

TABLE 1
Key Abbreviations and Notations

Notation Explanation
DR dimensionality reduction
CR cardinality reduction
QT quantization
PCA principal component analysis
JL projection a linear projection satisfying Theorem 3.1
FSS the algorithm proposed in [11, Theorem 36]

BKLW the distributed version of FSS proposed
in [27, Algorithm 1]

P original input dataset
n cardinality of P
d dimensionality of P
k number of clustering centers
X a set of clustering centers
P a partition of P
µ(P) the optimal 1-means center of P
PP,X the partition of dataset P induced by centers X

1
1+εx ≤ y ≤ (1+ ε)x. In our analysis, we use O(x) to denote
a value that is at most linear in x, Ω(x) to denote a value
that is at least linear in x, and Õ(x) to denote a value that is
at most linear in x times a factor that is polylogarithmic in x.

Given a dimensionality reduction map π : Rd → Rd
′

(d′ < d), we use π(P) := {π(p) : p ∈ P} to denote
the output dataset for an input dataset P , and π(P) :=
{π(P1), . . . , π(Pk)} to denote the partition of π(P) corre-
sponding to a partition P = {P1, . . . , Pk} of P . Moreover,
given a partition P ′ = π(P), we use π−1(P ′) to denote
the corresponding partition of P , which puts p, q ∈ P into
the same cluster if and only if π(p), π(q) ∈ P ′ belong to
the same cluster under P ′. Finally, given P ′ = π(P), we
use π−1(P ′) := {π−1(p′) : p′ ∈ P ′} to denote a set of
points in Rd that is mapped to P ′ by π. Note that there is
no guarantee that π−1(P ′) = P . However, suppose P̃ is
the solution which satisfies π(P̃) = P ′, then P̃ must exist
(P is a feasible solution) and π−1(P ′) denotes an arbitrary
solution. If π is a linear map, i.e., π(P) := APΠ for a matrix
Π ∈ Rd×d

′
, then the Moore-Penrose inverse Π+ [31] of Π gives

a feasible solution π−1(P ′) := AP ′Π
+.

The main notations and abbreviations used in the paper
are summarized in Table 1.

3.2 Dimensionality Reduction for k-Means
Definition 3.1. We say that a DR map π : Rd → Rd

′
(d′ < d)

is an ε-projection if it preserves the cost of any partition up to a
factor of 1 + ε, i.e., cost(P) ≈1+ε cost(π(P)) for every partition
P = {P1, . . . , Pk} of a finite set P ⊂ Rd.

One commonly used method to construct ε-projection is
random projection, where the cornerstone result is the JL
Lemma:

Lemma 3.1 ([18]). There exists a family of random linear maps
π : Rd → Rd

′
with the following properties: for every ε, δ ∈

(0, 1/2), there exists d′ = O(log(1/δ)
ε2) such that for every d ≥ 1

and all x ∈ Rd, we have Pr{‖π(x)‖ ≈1+ε ‖x‖} ≥ 1− δ.

Based on this lemma, the best known result achieved by
random projection is the following:

4

Theorem 3.1 ([10]). Consider any family of random linear maps
π : Rd → Rd

′
that (i) satisfies Lemma 3.1, and (ii) is sub-

Gaussian-tailed (i.e., the probability for the norm after mapping
to be larger than the norm before mapping by a factor of at least
1 + t is bounded by e−Ω(d′t2)). Then for every ε, δ ∈ (0, 1/4),
there exists d′ = O(1

ε2 log k
εδ), such that π is an ε-projection

with probability at least 1− δ.

There are many known methods to construct a random
linear map that satisfies the conditions (i–ii) in Theorem 3.1,
e.g., maps defined by matrices with i.i.d. Gaussian and sub-
Gaussian entries [32], [33], [34]. We will refer to such a
random projection as a JL projection.

Remark: Compared with PCA-based DR methods, JL pro-
jection has the advantage that the projection matrix is data-
oblivious, and can hence be pre-generated and distributed, or
generated independently by different nodes using a shared
random number generation seed, both incurring negligible
communication cost at runtime. As is shown later, this can
lead to significant savings in the communication cost.

3.3 Cardinality Reduction for k-Means

CR methods, also known as coreset construction algorithms,
aim at constructing a smaller weighted dataset (coreset) with
a bounded approximation error as follows.

Definition 3.2 ([11]). We say that a tuple (S,∆, w), where S ⊂
Rd, w : S → R, and ∆ ∈ R, is an ε-coreset of P ⊂ Rd if it pre-
serves the cost for every set of k centers up to a factor of 1± ε, i.e.,

(1− ε)cost(P,X) ≤ cost(S, X) ≤ (1 + ε)cost(P,X) (3)

for any X ⊂ Rd with |X| = k, where

cost(S, X) :=
∑
q∈S

w(q) · min
xi∈X

‖q − xi‖2 + ∆ (4)

denotes the k-means cost for a coreset S := (S,∆, w) and a set
of centers X .

We note that the above definition generalizes most of the
existing definitions of ε-coreset, which typically ignore ∆.

The best known coreset construction algorithm for k-
means was given in [11], which first reduces the intrinsic
dimension of the dataset by PCA, and then applies sensitiv-
ity sampling to the dimension-reduced dataset to obtain an
ε-coreset of the original dataset with a size that is constant
in n and d.

Theorem 3.2 ([11]). For any ε, δ ∈ (0, 1), with prob-
ability at least 1 − δ, an ε-coreset (S,∆, w) of size
|S| = O

(
k3 log2 k

ε4 log(1
δ)
)

can be computed in time
O(min(nd2, n2d) + nkε−2(d+ k log(1/δ))).

However, [11] only focused on minimizing the cardinal-
ity of coreset, ignoring the cost of transmitting the coreset.
As is shown later (Section 5.3), its proposed algorithm can
be severely suboptimal in the communication cost.

3.4 Problem Statement

The motivation of most existing DR/CR methods designed
for k-means is to speed up k-means computation in a setting
where the node holding the data is also the node computing

k-means. In contrast, we want to develop efficient k-means
algorithms in scenarios where the data generation and the
k-means computation occur at different locations, such as in
the case of edge-based learning. We will refer to the node(s)
holding the original data as the data source(s), and the node
running k-means computation as the server.

We will evaluate each considered algorithm by the fol-
lowing performance metrics:

• Approximation error: We say that a set of k-means
centers X is an α-approximation (α > 1) for k-means
clustering of P if cost(P,X) ≤ α ·cost(P,X∗), where
X∗ is the optimal set of k-means centers for P .

• Communication cost: We say that an algorithm incurs
a communication cost of y if a data source employing
the algorithm needs to send y scalars to the server.

• Complexity: We say that an algorithm incurs a
(time) complexity of z at the data source if a data
source employing the algorithm needs to perform z
elementary operations.

4 JOINT DR AND CR AT A SINGLE DATA SOURCE

We will first focus on the scenario where all the data are at a
single data source (the centralized setting). We will show that:
1) using suitably selected DR/CR methods and a sufficiently
powerful server, it is possible to solve k-means arbitrarily
close to the optimal, while incurring a low communication
cost and a low complexity at the data source; 2) the order
of applying DR and CR does not affect the approximation
error, but affects the complexity and the communication
cost; 3) repeated application of DR/CR can lead to a bet-
ter communication-computation tradeoff than applying DR
and CR only once.

4.1 DR+CR
We first consider the approach of applying DR and then CR.

4.1.1 An Existing DR+CR Algorithm
The state-of-the-art joint DR and CR algorithm, referred to
as FSS following the authors’ last names, was implicitly
presented in Theorem 36 in [11]. FSS first uses PCA to re-
duce the intrinsic dimension of the dataset and then applies
sensitivity sampling. Theorem 3.2 gives the complexity of
FSS, but the approximation error and the communication
cost incurred when using FSS to generate a data summary
for k-means were not given in [11]. Thus, we provide them
(proved in Appendix A) to facilitate later comparison.

Theorem 4.1. Suppose that the data source reports the coreset
S := (S,∆, w) computed by FSS [11] and the server computes
the optimal k-means centers X of S5. Then:

1) X is a (1 + ε)/(1 − ε)-approximation for k-means
clustering of P with probability ≥ 1− δ;

2) the communication cost is O
(
kd/ε2

)
,

assuming min(n, d)� k, 1/ε, and 1/δ.

5. Given a coreset S = (S,∆, w), X can be computed by ignoring ∆
and applying a weighted k-means algorithm to minimize

∑
q∈S w(q) ·

minxi∈X ‖q − xi‖2, or by converting S into an unweighted dataset by
duplicating each q ∈ S for w(q) times (on the average) and applying
an unweighted k-means algorithm.

5

Algorithm 1: Communication-efficient k-Means
under DR+CR

input : Original dataset P , number of centers k, JL
projection π1, FSS-based CR method π2

output: Centers for k-means clustering of P
1 data source:
2 P ′ ← π1(P);
3 (S′,∆, w)← π2(P ′);
4 report (S′,∆, w) to the server;
5 server:
6 X ′ ← kmeans(S′, w, k);
7 X ← π−1

1 (X ′);
8 return X ;

4.1.2 Communication-efficient DR+CR
Now the question is: can we further reduce the communi-
cation cost without hurting the approximation error and the
complexity?

Our key observation is that the linear communication
cost in d for FSS is due to the transmission of a basis of
the projected subspace. In contrast, JL projections are data-
oblivious. Thus, we can circumvent the cost of transmitting
the projected subspace by employing a JL projection as
the DR method, as the projected subspace can be predeter-
mined. The following is directly implied by the JL Lemma
(Lemma 3.1); see the proof in Appendix A.

Lemma 4.1. Let π : Rd → Rd
′

be a JL projection. Then there
exists d′ = O(ε−2 log(nk/δ)) such that for any P ⊂ Rd with
|P | = n and X,X∗ ⊂ Rd with |X| = |X∗| = k, the following
holds with probability at least 1− δ:

cost(P,X) ≈(1+ε)2 cost(π(P), π(X)), (5)
cost(P,X∗) ≈(1+ε)2 cost(π(P), π(X∗)). (6)

Using a JL projection for DR and FSS for CR, we propose
Algorithm 1, where the data source computes and reports
a coreset in a low-dimensional space by first applying JL
projection and then applying FSS (lines 2–4). Based on the
dimension-reduced coreset (S′,∆, w), the server solves the
k-means problem (line 6) and then converts the centers back
to the original space (line 7). Here, kmeans(S′, w, k) denotes
a (centralized) k-means algorithm that returns the k-means
centers for the data points in S′ with weights w, and π−1

1

denotes an inverse of the JL projection π1. We note that the
inverse of π1 is generally not unique as π1 is noninvertible,
but our analysis holds for any inverse (e.g., Moore-Penrose
inverse). The following theorem quantifies the performance
of Algorithm 1 (proved in Appendix A).

Theorem 4.2. For any ε, δ ∈ (0, 1), if in Algorithm 1, π1

satisfies Lemma 4.1, π2 generates an ε-coreset with probability at
least 1 − δ, and kmeans(S′, w, k) returns the optimal k-means
centers of the dataset S′ with weights w, then

1) the output X is a (1 + ε)5/(1− ε)-approximation for k-
means clustering of P with probability at least (1− δ)2,

2) the communication cost is O
(
kε−4 log n

)
, and

3) the complexity at the data source is Õ
(
ndε−2

)
,

assuming min(n, d)� k, 1/ε, and 1/δ.

Remark: We only focus on the complexity at the data
source as the server is usually much more powerful.

Algorithm 2: Communication-efficient k-Means
under CR+DR

input : Original dataset P , number of centers k, JL
projection π1, FSS-based CR method π2

output: Centers for k-means clustering of P
1 data source:
2 (S,∆, w)← π2(P);
3 S′ ← π1(S);
4 report (S′,∆, w) to the server;
5 server:
6 X ′ ← kmeans(S′, w, k);
7 X ← π−1

1 (X ′);
8 return X ;

Theorem 4.2 shows that Algorithm 1 can solve k-means
arbitrarily close to the optimal with an arbitrarily high prob-
ability, while incurring a complexity at the data source that
is roughly linear in the data size (i.e., nd) and a communica-
tion cost that is roughly logarithmic in the data cardinality n.

4.2 CR+DR
While Algorithm 1 can reduce the communication cost
without incurring much computation at the data source, it
remains unclear whether its order of applying DR and CR
is optimal. To this end, we consider applying CR first.

We again choose JL projection as the DR method to avoid
transmitting the projection matrix at runtime, and choose
FSS as the CR method as it generates an ε-coreset with
the minimum cardinality among the existing CR methods
for k-means. The algorithm, shown in Algorithm 2, differs
from Algorithm 1 in that the order of applying DR and
CR is reversed. That is, the data source first applies FSS
(line 2) and then applies JL projection (line 3) to compute
a dimension-reduced coreset (S′,∆, w), based on which the
server computes a set of k-means centers X in the same way
as Algorithm 1.

We now analyze the performance of Algorithm 2,
starting with a counterpart of Lemma 4.1 (proved in
Appendix A).

Lemma 4.2. Let π : Rd → Rd
′

be a JL projection. Then there
exists d′ = O(ε−2 log(n′k/δ)) such that for any coreset S :=
(S,∆, w), where S ⊂ Rd with |S| = n′, w : S → R, and
∆ ∈ R, and any X,X∗ ⊂ Rd with |X| = |X∗| = k, the
following holds with probability at least 1− δ:

cost(S, X) ≈(1+ε)2 cost((π(S),∆, w), π(X)), (7)
cost(S, X∗) ≈(1+ε)2 cost((π(S),∆, w), π(X∗)). (8)

Below, we will show that Algorithm 2 achieves the same
approximation error as Algorithm 1, but at different cost
and complexity (proved in Appendix A).

Theorem 4.3. For any ε, δ ∈ (0, 1), if in Algorithm 2, π1

satisfies Lemma 4.2, π2 generates an ε-coreset with probability at
least 1 − δ, and kmeans(S′, w, k) returns the optimal k-means
centers of the dataset S′ with weights w, then

1) the output X is an (1 + ε)5/(1− ε)-approximation for
k-means clustering of P with probability ≥ (1− δ)2,

2) the communication cost is Õ(k3/ε6), and
3) the complexity at the data source is O (nd ·min(n, d)),

assuming min(n, d)� k, 1/ε, and 1/δ.

6

Algorithm 3: Communication-efficient k-Means un-
der DR+CR+DR

input : Original dataset P , number of centers k, JL
projection π(1)

1 for P , FSS-based CR method π2,
JL projection π(2)

1 for the output of π2

output: Centers for k-means clustering of P
1 data source:
2 P ′ ← π

(1)
1 (P);

3 (S,∆, w)← π2(P ′);
4 S′ ← π

(2)
1 (S);

5 report (S′,∆, w) to the server;
6 server:
7 X ′ ← kmeans(S′, w, k);
8 X ← (π

(2)
1 ◦ π(1)

1)−1(X ′);
9 return X ;

4.3 Repeated DR/CR

Theorems 4.2 and 4.3 state that to achieve the same
approximation error with the same probability, DR+CR
(Algorithm 1) incurs a communication cost of O(kε−4 log n)
and a complexity of Õ(ε−2nd), while CR+DR (Algorithm 2)
incurs a communication cost of Õ(k3ε−6) and a complexity
ofO(nd·min(n, d)). This shows a communication-computation
tradeoff : the approach of DR+CR incurs a linear complexity
and a logarithmic communication cost, whereas the
approach of CR+DR incurs a super-linear complexity (which
is still less than quadratic) and a constant communication
cost. One may wonder whether it is possible to combine
the strengths of both of the algorithms. Below we give an
affirmative answer by applying some of these repeatedly.

We know from Theorem 3.2 that applying FSS once
already reduces the cardinality to a constant (in n and d),
and hence there is no need to repeat FSS. The same theorem
also implies that if we apply FSS first, we will incur a super-
linear complexity, and hence we need to apply JL projection
before FSS. Meanwhile, we see from Lemmas 4.1 and 4.2
that applying JL projection on a dataset of cardinality n′ can
reduce its dimension to O(ε−2 log(n′k/δ)) while achieving
a (1 +O(ε))-approximation with high probability. Thus, we
can further reduce the dimension by applying JL projection
again after reducing the cardinality by FSS. The above rea-
soning suggests a three-step procedure: JL→FSS→JL, pre-
sented in Algorithm 3. The data source applies JL projection
both before and after FSS (lines 2 and 4), where π(1)

1 projects
from Rd to RO(logn/ε2), and π(2)

1 projects from RO(logn/ε2) to
RO(log |S|/ε2). The server first computes the k-means centers
in the twice-protected space, and then converts them back
to the original space (line 8). Note that by convention,
π

(2)
1 ◦ π(1)

1 (X) means π(2)
1 (π

(1)
1 (X)).

Below, we will show that this seemingly small change is
able to combine the low communication cost of Algorithm 2
and the low complexity of Algorithm 1, at a small increase
in the approximation error; see Appendix A for the proof.

Theorem 4.4. For any ε, δ ∈ (0, 1), if in Algorithm 3, π(1)
1

satisfies Lemma 4.1, π(2)
1 satisfies Lemma 4.2, π2 generates an

ε-coreset of its input dataset with probability at least 1 − δ,
and kmeans(S′, w, k) returns the optimal k-means centers of the
dataset S′ with weights w, then

1) the output X is a (1 + ε)9/(1 − ε)-approximation for
k-means clustering of P with probability ≥ (1− δ)3,

2) the communication cost is Õ(k3/ε6), and
3) the complexity at the data source is Õ(nd/ε2),

assuming min(n, d)� k, 1/ε, and 1/δ.

Remark: Theorem 4.4 implies that Algorithm 3 is essen-
tially “optimal” in the sense that it achieves a (1 + O(ε))-
approximation with an arbitrarily high probability, at a near-
linear complexity and a constant communication cost at
the data source. Thus, no qualitative improvement will be
achieved by applying further DR/CR methods.

5 JOINT DR AND CR ACROSS MULTIPLE DATA
SOURCES

Consider the scenario where the dataset P is split across
m data sources (m ≥ 2). Let Pi denote the dataset at data
source i and ni be its cardinality. As shown below, the pre-
vious algorithms can be adapted to the distributed setting.

5.1 Distributed Version of FSS
It turns out that the state-of-the-art distributed DR and
CR algorithm, proposed in [27, Algorithm 1], is exactly a
distributed version of FSS, referred to as BKLW following
the authors’ last names. As in FSS, BKLW first uses PCA
to reduce the intrinsic dimension of the dataset and then
applies sensitivity sampling. However, it uses distributed
algorithms to perform these steps.

For distributed PCA, BKLW applies an algorithm disPCA
from [11] (formalized in Algorithm 1 in [35]), where:

1) each data source i (i = 1, . . . ,m) computes local
SVD APi = UiΣiV

T
i , and sends Σ

(t1)
i and V

(t1)
i

to the server (Σ(t1)
i and V

(t1)
i contain the first t1

columns of Σi and Vi, respectively);
2) the server constructs Y T = [Y T1 , . . . , Y

T
m], with Yi =

Σ
(t1)
i (V

(t1)
i)T , computes a global SVD Y = UΣV T ;

3) the first t2 columns of V are returned as an approx-
imate solution to the PCA of

⋃m
i=1 Pi.

For distributed sensitivity sampling, BKLW applies an
algorithm disSS from [4] (Algorithm 1), where:

1) each data source i (i = 1, . . . ,m) computes a
bicriteria approximation Xi for Pi and reports
cost(Pi, Xi);

2) the server allocates a global sample size s to each
data source proportionally to its cost, i.e., si =
s · cost(Pi, Xi)/

(∑m
j=1 cost(Pj , Xj)

)
;

3) each data source i draws si i.i.d. samples Si from Pi
with probability proportional to cost({p}, Xi), and
reports Si ∪ Xi with their weights w : Si ∪ Xi →
R, that are set to match the number of points per
cluster;

4) the union of the reported sets (
⋃m
i=1(Si ∪Xi), 0, w)

is returned as a coreset of
⋃m
i=1 Pi.

BKLW first applies disPCA, followed by disSS with s =
O(ε−4(k2/ε2 +log(1/δ))+mk log(mk/δ)) to the dimension-
reduced dataset {APiV (t2)(V (t2))T }mi=1 to compute a core-
set (S, 0, w) at the server. Finally, the server computes the

7

optimal k-means centers X on (S, 0, w) and returns it as an
approximation to the optimal k-means centers of

⋃m
i=1 Pi.

Although a theorem was given in [27] without proof on
the performance of BKLW, the result is imprecise and incom-
plete. Here, we provide the complete analysis to facilitate
later comparison. We will leverage the following results.

Theorem 5.1 ([35]). For any ε ∈ (0, 1/3), let t1 = t2 ≥
k + d4k/ε2e − 1 in disPCA and P̃i be the projected dataset at
data source i (i.e., the set of rows of APiV

(t2)(V (t2))T). Then
there exists a constant ∆ ≥ 0 such that for any set X ⊂ Rd with
|X| = k,

(1−ε)cost(P,X)≤ cost(P̃ ,X)+∆≤ (1+ε)cost(P,X), (9)

where P :=
⋃m
i=1 Pi and P̃ :=

⋃m
i=1 P̃i.

Theorem 5.2 ([4]). For a distributed dataset {Pi}mi=1 with Pi ⊂
Rd and any ε, δ ∈ (0, 1), with probability at least 1−δ, the output
(S, 0, w) of disSS is an ε-coreset of

⋃m
i=1 Pi of size

|S| = O

(
1

ε4

(
kd+ log(

1

δ
)
)

+mk log(
mk

δ
)

)
. (10)

Theorems 5.1 and 5.2 bound the performance of disPCA
and disSS, respectively, based on which we have the follow-
ing results for BKLW (see proof in Appendix A).

Theorem 5.3. For any ε ∈ (0, 1/3) and δ ∈ (0, 1), suppose
that in BKLW, disPCA satisfies Theorem 5.1 for the input dataset
{Pi}mi=1 and disSS satisfies Theorem 5.2 for the input dataset
{P̃i}mi=1. Then

1) the output X is a (1 + ε)2/(1 − ε)2-approximation for
k-means clustering of

⋃m
i=1 Pi with probability ≥ 1− δ,

2) the total communication cost over all the data sources is
O(mkd/ε2), and

3) the complexity at each data source is O(nd ·min(n, d)),

assuming min(n, d)� m, k, 1/ε, and 1/δ.

5.2 Enhancements
It is easy to see that each data source can apply JL projection
independently at no additional communication cost. Fol-
lowing the ideas in Algorithms 1 and 2, we wonder: (i) Can
we improve BKLW by combining it with JL projection? (ii) Is
there an optimal order of applying BKLW and JL projection?

We first consider applying JL projection before invok-
ing BKLW. For consistency with Algorithm 1, we only
use the first two steps of BKLW, i.e., disPCA and disSS,
that construct a coreset, which we refer to as a BKLW-
based CR method. The algorithm, shown in Algorithm 4, is
essentially the distributed counterpart of Algorithm 1. First,
each source independently applies JL projection to its local
dataset (line 2). Then, the sources cooperatively run BKLW,
i.e., disPCA + disSS (line 3). Finally, the server uses the
received dimension-reduced coreset to solve k-means and
converts the centers back to the original space (lines 5–6).

We now analyze the performance of Algorithm 4, start-
ing from a coreset-like property of the BKLW-based CR
method π2 (see proof in Appendix A).

Lemma 5.1. Let P :=
⋃m
i=1 Pi be the union of the input datasets

for the BKLW-based CR method π2 and S := (S, 0, w) be the
resulting coreset reported to the server. For any ε ∈ (0, 1/3)

Algorithm 4: Communication-efficient Distributed
k-Means under DR+CR

input : Distributed dataset {Pi}mi=1, number of centers
k, JL projection π1, BKLW-based CR method π2

output: Centers for k-means clustering of P
1 each data source i (i = 1, . . . ,m):
2 P ′i ← π1(Pi);
3 run π2 on the distributed dataset {P ′i}mi=1, which results

in each data source i reporting a local coreset (S′i, 0, w)
to the server;

4 server:
5 X ′ ← kmeans(

⋃m
i=1 S

′
i, w, k);

6 X ← π−1
1 (X ′);

7 return X ;

and δ ∈ (0, 1), ∃t1 = t2 = O(k/ε2), s = O(ε−4(k2/ε2 +
log(1/δ)) + mk log(mk/δ)), and ∆ ≥ 0, such that with
probability at least 1−δ, π2 with parameters t1, t2, and s satisfies

(1− ε)2cost(P,X)≤ cost(S, X)+∆≤ (1+ε)2cost(P,X) (11)

for any set X of k points in the same space as P .

Remark: Comparing Lemma 5.1 with Definition 3.2, we
see that π2 does not construct an O(ε)-coreset of its input
dataset. Nevertheless, its output can approximate the k-
means cost of the input dataset up to a constant shift, which
is sufficient for computing approximate k-means.

We have the following performance guarantee for Algo-
rithm 4 (see proof in Appendix A).

Theorem 5.4. For any ε ∈ (0, 1/3) and δ ∈ (0, 1), suppose that
in Algorithm 4, π1 satisfies Lemma 4.1, π2 satisfies Lemma 5.1,
and kmeans(

⋃m
i=1 S

′
i, w, k) returns the optimal k-means centers

of the dataset
⋃m
i=1 S

′
i with weights w. Then

1) the output X is a (1+ε)6/(1−ε)2-approximation for k-
means clustering of

⋃m
i=1 Pi with probability≥ (1−δ)2,

2) the total communication cost over all the data sources is
O(mkε−4 log n), and

3) the complexity at each data source is Õ(ndε−4),

assuming min(n, d)� m, k, 1/ε, and 1/δ.

Discussion: Comparing Theorems 5.4 and 5.3, we see that
for d� log n (e.g., d = Ω(n)), Algorithm 4 can significantly
reduce the communication cost and the complexity at data
sources, while achieving a similar (1+O(ε))-approximation
as BKLW. Note that although the possibility of applying
another DR method before BKLW was mentioned in [27],
no result was given there.

Meanwhile, although one could develop a distributed
counterpart of Algorithm 2 that applies JL projection after
BKLW, its performance will not be competitive. Specifi-
cally, using similar analysis, this approach incurs the same
order of communication cost and complexity as BKLW.
Meanwhile, the JL projection introduces additional error,
causing its overall approximation error to be larger. It is
thus unnecessary to consider this algorithm.

Furthermore, we note that repeated application of
DR/CR is unnecessary in the distributed setting. This is
because after one round of BKLW (with or without ap-
plying JL projection beforehand), we already reduce the
cardinality to O(ε−4(k2/ε2 + log(1/δ)) + mk log(mk/δ))

8

TABLE 2
Summary of Comparison

Algorithm Communication cost Computational complexity
FSS [11] O(kd/ε22) O(nd ·min(n, d))

JL + FSS (Alg. 1) O(k logn/ε41) Õ(nd/ε21)

FSS + JL (Alg. 2) Õ(k3/ε61) O(nd ·min(n, d))

JL + FSS + JL (Alg. 3) Õ(k3/ε63) Õ(nd/ε23)

BKLW [27] O(mkd/ε24) O(nd ·min(n, d))

JL + BKLW (Alg. 4) O(mk logn/ε45) Õ(nd/ε45)

and the dimension to O(k/ε2), both constant in the size
(n, d) of the original dataset. Meanwhile, this round incurs
a communication cost that scales with (n, d) as O(log n)
(with JL projection) or O(d) (without JL projection), and
a complexity that scales as Õ(nd) (with JL projection) or
O(nd · min(n, d)) (without JL projection). Therefore, any
possible reduction in the cost (or the complexity) achieved
by further reducing the cardinality or dimension will be
dominated by the cost (or the complexity) in the first round.
Hence, repeated application of DR/CR will not improve the
order of the communication cost or the complexity.

5.3 Summary of Comparison
We are now ready to compare the performances of all the
proposed algorithms and their best existing counterparts
in both centralized (i.e., single data source) and distributed
(i.e., multiple data sources) settings.

To ensure the same approximation error for all the algo-
rithms, we set the error parameter ‘ε’ to ε1 for Algorithms 1
and 2, ε2 for FSS, ε3 for Algorithm 3, ε4 for BKLW, and
ε5 for Algorithm 4, where for any ε ∈ (0, 1), ε1 satisfies
(1+ε1)5/(1−ε1) = 1+ε, ε2 satisfies (1+ε2)/(1−ε2) = 1+ε,
ε3 satisfies (1+ε3)9/(1−ε3) = 1+ε, ε4 satisfies (1+ε4)2/(1−
ε4)2 = 1 + ε, and ε5 satisfies (1 + ε5)6/(1− ε5)2 = 1 + ε.

The comparison, summarized in Table 2, is in terms
of the communication cost and the complexity at the data
source(s) for achieving a (1 + ε)-approximation for k-means
clustering of an input dataset of cardinality n and dimension
d, where the first four rows are for the centralized setting
and the last two rows are for the distributed setting. Our
focus is on the scaling with n and d, which are assumed
to dominate the other parameters (i.e., k, m, 1/εi). Clearly,
for high-dimensional datasets satisfying d � log n, the
best proposed algorithms (Algorithm 3 and Algorithm 4)
significantly outperforms the best existing algorithms (FSS
and BKLW) in both centralized and distributed settings.

6 EXTENSION TO JOINT DR, CR, AND QT
Besides cardinality and dimensionality, the volume of a
dataset also depends on its precision, defined as the number
of bits used to represent each attribute in the dataset. While
DR and CR methods can be used to reduce the dimension-
ality and the cardinality, quantization techniques [12] can be
used to reduce the precision and hence further reduce the
communication cost. While the optimal efficient quantiza-
tion in support of k-means is worth a separate study, our
focus here is on properly combining a given quantizer with
the proposed DR/CR methods. To this end, we will use a
simple rounding-based quantizer as a concrete example.

6.1 Rounding-based Quantization

Given a scalar x ∈ R, we denote the b0-bit binary floating
number representation of x by

x = (−1)sign(x) × 2ex×
(a(0)+a(1)×2−1 +. . .+a(b0−1−me)×2−(b0−1−me)), (12)

where sign(x) = 0 if x ≥ 0 and sign(x) = 1 if x < 0, me

is the number of exponent bits, ex is the me-bit exponent of
x, and a(·) ∈ {0, 1} are the significant bits (a(0) ≡ 1). The
rounding-based quantizer Γ with s significant bits is

Γ(x) := (−1)sign(x) × 2ex×
(a(0) + a(1)× 2−1 + . . .+ a(s)× 2−s + a′(s)× 2−s), (13)

where a′(s) is the result of rounding the remaining bits (0:
rounding down; 1: rounding up).

For simplicity of notation, we also use p′ := Γ(p) to
denote the element-wise rounding-based quantization of a
data point p = (pi)

d
i=1 ∈ Rd. Defining the maximum quan-

tization error as ∆QT := maxp∈P ‖p− p′‖, we know that by
the definition of rounding-based quantizer, the quantization
error in each element satisfies |pi − p′i| ≤ 2epi−s ≤ |pi|2−s
since |pi| ≥ 2epi . Therefore, the maximum quantization
error is bounded as

∆QT = max
p∈P

√√√√ d∑
i=1

(pi − p′i)2

≤ max
p∈P

√√√√ d∑
i=1

2−2sp2
i = 2−s max

p∈P
‖p‖. (14)

6.2 Approximation Error Analysis

We now analyze the performance after adding quantiza-
tion to the proposed communication-efficient k-means algo-
rithms. As DR and CR can generate data points of arbitrary
values that may not be representable with a given number
of significant bits, we add quantization after all the DR/CR
steps. That is, we assume that right before a data source re-
ports its dimension-reduced coreset (S,∆, w) to the server,
it will apply the rounding-based quantizer Γ and report
(SQT ,∆, w) instead6, where SQT := {Γ(p) : p ∈ S}. Obvi-
ously, the quantization further reduces the communication
cost. It also incurs a computational complexity that is linear
in the size of S, which is sub-linear in the size of the original

6. Here we only apply quantization to the coreset points in S as their
transfer dominates the communication cost, but our approach can be
extended to other cases.

9

dataset (i.e., nd) and thus subsumed by the complexity
of DR/CR (as shown in Table 2). The only performance
metric it can negatively impact is the approximation error,
which is analyzed in the following theorem (see proof in
Appendix A).

Theorem 6.1. Let X denote the optimal k-means centers com-
puted by the server based on the received coreset, X∗ denote the
optimal k-means centers based on the original dataset, and ∆D

denote the diameter of the input space.

1) In Algorithm 1, suppose that π1 satisfies Lemma 4.1 with
ε1, π2 generates an ε2-coreset with probability ≥ 1 −
δ, and πQT is a quantizer with maximum error ∆QT .
If we update Line 4 to: S′QT ← πQT (S′) and report
(S′QT ,∆, w) to the server, then the approximation error
will be

cost(P,X) ≤ (1 + ε1)4(1 + ε2)

(1− ε2)
cost(P,X∗)

+
(1 + ε1)2

(1− ε2)
4n∆D∆QT (15)

with probability at least (1− δ)2.
2) In Algorithm 2, suppose that π1 satisfies Lemma 4.2 with

ε1, π2 generates an ε2-coreset with probability ≥ 1 −
δ, and πQT is a quantizer with maximum error ∆QT .
If we update Line 4 to: S′QT ← πQT (S′) and report
(S′QT ,∆, w) to the server, then the approximation error
will be

cost(P,X) ≤ (1 + ε1)4(1 + ε2)

(1− ε2)
cost(P,X∗)

+
(1 + ε1)2

(1− ε2)
4n∆D∆QT (16)

with probability at least (1− δ)2.
3) In Algorithm 3, suppose that π(1)

1 satisfies Lemma 4.1
with ε(1)

1 , π(2)
1 satisfies Lemma 4.2 with ε(2)

1 , π2 gener-
ates an ε2-coreset with probability ≥ 1 − δ, and πQT
is a quantizer with maximum error ∆QT . If we update
Line 5 to: S′QT ← πQT (S′) and report (S′QT ,∆, w) to
the server, then the approximation error will be

cost(P,X) ≤ (1 + ε
(1)
1)4(1 + ε2)(1 + ε

(2)
1)4

(1− ε2)
cost(P,X∗)

+
(1 + ε

(1)
1)2(1 + ε

(2)
1)2

(1− ε2)
4n∆D∆QT (17)

with probability at least (1− δ)3.
4) In Algorithm 4, suppose that π1 satisfies Lemma 4.1,

π2 satisfies Lemma 5.1, and πQT is a quantizer with
maximum error ∆QT . If we update Line 3 to: run
π2 on the distributed dataset {P ′i}mi=1 to compute a
local coreset (S′i, 0, w) at each data source i and report
(πQT (S′i), 0, w) to the server, then the approximation
error will be

cost(P,X) ≤ (1 + ε1)4(1 + ε2)2

(1− ε2)2
cost(P,X∗)

+
(1 + ε1)2

(1− ε2)2
4n∆D∆QT (18)

with probability at least (1− δ)2.

6.3 Configuration of Joint DR, CR, and QT
Based on the analysis of the approximation error under
given DR, CR, and QT (quantization) methods, we aim to
answer the following question: how can we configure the
DR, CR, and QT methods such that we can minimize the
communication cost while keeping the approximation error
within a given bound? We will present a detailed solution
for the four-step procedure JL+FSS+JL+QT, as the solutions
for the other procedures are similar.

6.3.1 Problem Formulation
Let Y0 denote a desired bound on the approximation error
and 1 − δ0 the desired confidence level, i.e., cost(P,X) ≤
Y0cost(P,X∗) with probability ≥ 1 − δ0, where X is the
computed k-means solution and X∗ the optimal solution.
By Theorem 6.1, the QT step introduces an additive error.
We now convert it into a multiplicative error to enforce
the bound Y0. To this end, suppose that we are given a
lower bound E on the optimal k-means cost cost(P,X∗).
For example, by [36], we can estimate E by selecting O(k)
points from P according to a certain probability distribution,
repeating this process for log(1/δ) times, and outputting
the set X of selected points with the minimum cost(P,X).
This result is proven to be at most 20-time worse than the
optimal solution, i.e., E := cost(P,X)/20 ≤ cost(P,X∗),
with probability at least 1 − δ. Define εQT :=

4n∆D∆QT

E .
Then based on (17), we have:

cost(P,X) (19)

≤ (1 + ε
(1)
1)4(1 + ε2)(1 + ε

(2)
1)4

(1− ε2)
cost(P,X∗)

+
(1 + ε

(1)
1)2(1 + ε

(2)
1)2

(1− ε2)
4n∆D∆QT

≤ (1 + ε
(1)
1)4(1 + ε2)(1 + ε

(2)
1)4

(1− ε2)
cost(P,X∗)

+
(1 + ε

(1)
1)2(1 + ε

(2)
1)2

(1− ε2)

4n∆D∆QT

E
cost(P,X∗)

=
(1 + ε

(1)
1)2(1 + ε

(2)
1)2

(1− ε2)
×

((1 + ε
(1)
1)2(1 + ε2)(1 + ε

(2)
1)2 + εQT)cost(P,X∗). (20)

Let f(ε
(1)
1 , ε2, ε

(2)
1 , εQT) denote the communication cost

as a function of the configuration parameters ε(1)
1 , ε2, ε(2)

1 ,
and εQT . Our goal is to find the optimal configuration
that minimizes the communication cost while satisfying the
given bound on the approximation error:

min
ε
(1)
1 ,ε2,ε

(2)
1 ,εQT

X := f(ε
(1)
1 , ε2, ε

(2)
1 , εQT) (21a)

s.t. Y :=
(1 + ε

(1)
1)2(1 + ε

(2)
1)2

(1− ε2)
×

((1 + ε
(1)
1)2(1 + ε2)(1 + ε

(2)
1)2 + εQT)

≤ Y0, (21b)

where X denotes the communication cost and Y denotes (an
upper bound on) the approximation error. The parameter
δ is set to 1 − (1 − δ0)1/3 such that the desired confidence
level is satisfied.

10

6.3.2 Analysis
The communication cost X is dominated by the transfer
of the dimension-reduced, quantized coreset S′QT . Let its
cardinality, dimensionality, and precision be n′, d′, and b′.
By [11], the cardinality of an ε2-coreset generated by FSS
is n′ = O(k

3 log2(k) log(1/δ)
ε42

). To satisfy Lemma 4.1 with

ε
(2)
1 , the dimensionality needs to satisfy d′ = O(log(n′k/δ)

(ε
(2)
1)2

).

By the analysis of quantization error in Section 6.1, b′ =

O(log(n
√
d

εQT
)). Denoting the constant factors in these big-O

terms by C1, C2, and C3, we have

X ≈ n′ · d′ · b′ (22)

= C1
k3 log2(k) log(1/δ)

ε42
· C2

log(n′k/δ)

(ε
(2)
1)2

· C3 log
(n√d
εQT

)
(23)

= C̃1 ·
log(C̃2/ε

4
2)

ε42(ε
(2)
1)2

·

log

(
C̃3

Y0(1−ε2)

(1+ε
(1)
1)2(1+ε

(2)
1)2
− (1 + ε

(1)
1)2(1 + ε2)(1 + ε

(2)
1)2

)
,

(24)

where C̃1 = k3 log2(k) log(1
δ)C1C2C3, C̃2 =

k4 log2(k) log(1
δ)

δ ,
and C̃3 = n

√
d. Assuming k ≥ 2, by plugging the constant

factors from [23], [37], [38] into Theorem 36 from [11], we
can use C1 = 54912(1+ log2(3))(1+ log2(26/3))/225. By JL
projection, d′ ≤ d8 ∗ log(4n′k

δ)/ε2e, and therefore C2 could
be 24. Assuming n > 8 and E ≥ 1, C3 could be 2. Equation
(24) is obtained by replacing εQT by its maximum value
derived from (21b).

While solving (21) in the general case is nontrivial,
we note that for the rounding-based quantizer defined
in Section 6.1, εQT only has a finite number of possible
values, corresponding to the number of significant bits
s = 1, . . . , b0 − 1 − me. Thus, under the simplifying con-
straint of ε(1)

1 = ε2 = ε
(2)
1 =: ε, we can enumerate each

possible value of εQT , compute the maximum ε under this
εQT from (21b), and plug it into (24) to evaluate X . We can
then select the configuration that yields the minimum X .

7 PERFORMANCE EVALUATION

We now use experiments on real datasets to validate our
analysis about the proposed joint DR, CR and QT algorithms
in comparison with the state of the art in both the single-
source and the multiple-source cases.

7.1 Datasets, Metrics, and Test Environment

We use two datasets: (1) MNIST training dataset [39], a
handwritten digits dataset which has 60, 000 images in 784-
dimensional space; (2) NeurIPS Conference Papers 1987-
2015 dataset [40], a word counts dataset of the NeurIPS
conference papers published from 1987 to 2015, which has
11, 463 instances (words) with 5, 812 attributes (papers).
Both of these two datasets are normalized to [−1, 1] with
zero mean. In the case of multiple data sources, we ran-
domly partition each dataset among 10 data sources.

We measure the performance by (i) the approxima-
tion error, measured by the normalized k-means cost
cost(P,X)/cost(P,X∗), where X is the set of centers re-
turned by the evaluated algorithm and X∗ is the set of
centers computed from P , (ii) the normalized communica-
tion cost, measured by the ratio between the number of bits
transmitted by the data source(s) and the size of P , and
(iii) the complexity at the data source(s), measured by the
running time of the evaluated DR/CR algorithm. We set
k = 2 in all the experiments. Because of the randomness of
the algorithms, we repeat each test for 10 Monte Carlo runs7.

We run an edge-based machine learning system in a sim-
ulated environment and consider both cases of single and
multiple data sources. All the experiments are conducted on
a Windows machine with Intel i7-8700 CPU and 48GB DDR4
memory. We note that our simulated results closely resemble
those in an actual distributed system, as the performance
metrics we measure are either independent of the test
environment (approximation error and communication cost)
or only dependent through a scaling factor (running time).
Although the absolute value of the running time depends on
the processor speed at the data source, different processor
speeds will only cause different scaling factors, and thus
the running times obtained in our experiments can still be
used to compare the complexities between algorithms.

7.2 Results for Joint DR and CR
7.2.1 Evaluated Algorithms
In the case of a single data source, we evaluate the following
algorithms:

• “FSS”: the benchmark algorithm introduced in [11],
• “JL+FSS”: Algorithm 1, where we use JL projection

before applying FSS,
• “FSS+JL”: Algorithm 2, where we use JL projection

after applying FSS, and
• “JL+FSS+JL”: Algorithm 3, where we apply JL pro-

jection both before and after FSS.

In the case of multiple data sources, we evaluate the
following algorithms:

• “BKLW”: the benchmark algorithm from [27], and
• “JL+BKLW”: Algorithm 4, where we apply JL projec-

tion before BKLW.

In both cases, we have tuned the parameters of both
the benchmark and proposed algorithms to make all the
algorithms achieve a similar empirical approximation error.
As a baseline, we also include the naive method of “no
reduction (NR)”, i.e., transmitting the raw data.

7.2.2 Results
In the case of a single data source, the data source computes
and reports a data summary using the evaluated DR/CR
algorithms, based on which a server computes k-means
centers. The results are given in Figure 1 and Table 3. Note
that by definition, the baseline (NR) has a normalized k-
means cost of 1, a normalized communication cost of 1,

7. The number of Monte Carlo runs is limited by the running time of
the experiment, which takes around 30 hours to complete one Monte
Carlo run for all the algorithms and all the settings in Section 7.3.

11

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+FSS (Alg1)

FSS+JL (Alg2)

JL+FSS+JL (Alg3)

FSS

30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+FSS (Alg1)

FSS+JL (Alg2)

JL+FSS+JL (Alg3)

FSS

(a) MNIST

1 1.05 1.1 1.15 1.2 1.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+FSS (Alg1)

FSS+JL (Alg2)

JL+FSS+JL (Alg3)

FSS

20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
JL+FSS (Alg1)

FSS+JL (Alg2)

JL+FSS+JL (Alg3)

FSS

(b) NeurIPS

Fig. 1. Single-source case: normalized k-means cost and running time

and no computation at the data source. We observe the
following: (i) Compared to the naive method of trans-
mitting the raw data (NR), the proposed algorithms can
dramatically reduce the communication cost (by > 99%)
with a moderate increase in the k-means cost (< 10%).
(ii) Compared to the benchmark (FSS), the proposed al-
gorithms can achieve a similar or smaller k-means cost
while significantly reducing the communication cost and/or
complexity, which is thanks to the proper application of JL
projection and consistent with our theoretical analysis in
Table 2. (iii) Between the approaches of DR+CR (JL+FSS)
and CR+DR (FSS+JL), we see that the DR+CR approach
yields a better performance for the NeurIPS dataset, where
JL+FSS has a substantially shorter running time than FSS+JL
but similar k-means cost and communication cost. This
is because log n � min(n, d) for this dataset, allowing
JL+FSS to significantly reduce the complexity compared
with FSS+JL without blowing up the communication cost
according to our analysis in Table 2. (iv) For a sufficiently
high-dimensional dataset such as NeurIPS, JL+FSS+JL can
further improve the communication-computation tradeoff
while achieving a similar k-means cost, which is again
consistent with our analysis in Table 2.

In the case of multiple data sources, m = 10 data sources
cooperatively compute and report a data summary using the
evaluated distributed DR/CR algorithms, based on which
a server computes k-means centers for the union of the
m local datasets. The results are shown in Figure 2 and
Table 4. We see that the proposed algorithm (JL+BKLW)
achieves a k-means cost comparable to the benchmark
(BKLW), while incurring a lower complexity and a lower
communication cost. This improvement is again thanks to
the suitable application of JL projection, which is efficient

TABLE 3
Single-source Case: Normalized Communication Cost

Dataset NR FSS JL+FSS FSS+JL JL+FSS+JL
MNIST 1 8.95e-3 5.82e-3 5.82e-3 5.97e-3

NeurIPS 1 5.87e-3 3.60e-3 3.59e-3 2.84e-3

1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.018 1.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F JL+BKLW (Alg4)

BKLW

26 28 30 32 34 36 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+BKLW (Alg4)

BKLW

(a) MNIST

1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+BKLW (Alg4)

BKLW

44 45 46 47 48 49 50 51 52 53 54
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JL+BKLW (Alg4)

BKLW

(b) NeurIPS

Fig. 2. Multiple-source case: normalized k-means cost and running time

TABLE 4
Multiple-source Case: Normalized Communication Cost

Dataset NR BKLW JL+BKLW
MNIST 1 1.97e-2 1.69e-2

NeurIPS 1 1.28e-2 1.05e-2

in both computational complexity and communication cost;
the observations are consistent with the analysis in Table 2.
Recall that applying JL projection after BKLW will not re-
duce the communication cost or the complexity as explained
after Theorem 5.4.

7.3 Results for Joint DR, CR, and QT

We assume double precision for the original dataset before
applying QT. For tractability, in the experiments we set all
the ε values except εQT to be equal when solving (21).

7.3.1 Evaluated Algorithms
In the case of a single data source, we evaluate the following:

• “FSS+QT”: the quantization-added version of
FSS [11],

• “JL+FSS+QT”: the quantization-added version of Al-
gorithm 1,

• “FSS+JL+QT”: the quantization-added version of Al-
gorithm 2, and

• “JL+FSS+JL+QT”: the quantization-added version of
Algorithm 3.

In the case of multiple data sources, we evaluate the
following:

• “BKLW+QT”: the quantization-added version of
BKLW [27], and

• “JL+BKLW+QT”: the quantization-added version of
Algorithm 4.

For each algorithm, we construct a data summary under
each configuration that corresponds to a possible number
of significant bits s, and then solve k-means based on

12

5 10 15 20 25 30 35 40 45 50
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

N
o

rm
a

li
z
e

d
 k

m
e

a
n

s
 c

o
s
ts

JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(a) Normalized k-means cost

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

N
o

rm
a

liz
e

d
 c

o
m

m
u

n
ic

a
ti
o

n
 c

o
s
ts 10-3

JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(b) Normalized communication cost

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

R
u

n
n

in
g

 t
im

e
s
 (

s
)

JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(c) Running time (s)

Fig. 3. Single-source case with quantization: MNIST

5 10 15 20 25 30 35 40 45 50
1

1.05

1.1

1.15

1.2

1.25

1.3

N
o

rm
a

li
z
e

d
 k

m
e

a
n

s
 c

o
s
ts JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(a) Normalized k-means cost

5 10 15 20 25 30 35 40 45 50
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

N
o

rm
a

liz
e

d
 c

o
m

m
u

n
ic

a
ti
o

n
 c

o
s
ts

JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(b) Normalized communication cost

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

R
u

n
n

in
g

 t
im

e
s
 (

s
)

JL+FSS+QT (Alg1+QT)

FSS+JL+QT (Alg2+QT)

JL+FSS+JL+QT (Alg3+QT)

FSS+QT

(c) Running time (s)

Fig. 4. Single-source case with quantization: NeurIPS

the data summary. Since the IEEE Standard 754 floating
number representation [41] consists of 53 significant bits,
we enumerate s = 1, . . . , 53.

7.3.2 Results
The results for the single data source scenario are given
in Figures 3–4. We have the following key observations:
(i) Compared with the methods without quantization (the
right-most points under s = 53), adding suitably config-
ured quantization can further reduce the communication
cost by 2/3 without increasing the k-means cost or the
running time. This is because the cluster structure for k-
means clustering has certain robustness to minor shifts of
data points (caused by rounding off a few least signifi-
cant bits). (ii) However, it is nontrivial to find the optimal

5 10 15 20 25 30 35 40 45 50
1

1.005

1.01

1.015

1.02

1.025

1.03

N
o
rm

a
li
z
e
d
 k

m
e
a
n
s
 c

o
s
ts JL+BKLW+QT (Alg4+QT)

BKLW+QT

(a) Normalized k-means cost

5 10 15 20 25 30 35 40 45 50
0.01

0.015

0.02

0.025

0.03

0.035

0.04

N
o

rm
a

liz
e

d
 c

o
m

m
u

n
ic

a
ti
o

n
 c

o
s
ts

JL+BKLW+QT (Alg4+QT)

BKLW+QT

(b) Normalized communication cost

5 10 15 20 25 30 35 40 45 50
50

60

70

80

90

100

110

120

130

140

150

R
u

n
n

in
g

 t
im

e
s
 (

s
)

JL+BKLW+QT (Alg4+QT)

BKLW+QT

(c) Running time (s)

Fig. 5. Multiple-source case with quantization: MNIST

5 10 15 20 25 30 35 40 45 50
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

N
o

rm
a

li
z
e

d
 k

m
e

a
n

s
 c

o
s
ts JL+BKLW+QT (Alg4+QT)

BKLW+QT

(a) Normalized k-means cost

5 10 15 20 25 30 35 40 45 50
0.005

0.01

0.015

0.02

0.025

N
o
rm

a
liz

e
d
 c

o
m

m
u
n
ic

a
ti
o
n
 c

o
s
ts

JL+BKLW+QT (Alg4+QT)

BKLW+QT

(b) Normalized communication cost

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

R
u

n
n

in
g

 t
im

e
s
 (

s
)

JL+BKLW+QT (Alg4+QT)

BKLW+QT

(c) Running time (s)

Fig. 6. Multiple-source case with quantization: NeurIPS

configuration to achieve a comparable k-means cost and
running time with the least communication cost, as very
small and very large values of s both lead to suboptimal
performance. Intuitively, setting s too large will fail to
take advantage of the communication cost saving due to
quantization, and setting it too small will cause too much
quantization error and leave no room of error for DR/CR.
(iii) When the dimensionality is not too high (e.g., MNIST),
a three-step procedure such as JL+FSS+QT or FSS+JL+QT
suffices; for a high-dimensional dataset such as NeurIPS, the
four-step procedure JL+FSS+JL+QT can further reduce the
communication cost and the running time while achieving
a comparable k-means cost, which is consistent with the
predicted advantage of JL+FSS+JL in the regime of n, d� 1
as shown in Table 2.

13

The results for the multiple data source scenario are
given in Figures 5–6. We have similar observations as in the
single-source case: (i) Compared with no quantization (the
right-most points under s = 53), adding suitably configured
quantization can further reduce the communication cost by
10% without increasing the k-means cost or the running
time. (ii) Choosing a proper configuration (by selecting the
optimal number of significant bits to retain in quantization)
is nontrivial. (iii) Compared with BKLW+QT, JL+BKLW+QT
can reduce both the communication cost and the running
time while achieving a similar k-means cost, which is con-
sistent with the comparison between BKLW and JL+BKLW
(Figure 2 and Table 4) as well as the theoretical prediction in
Table 2. This result again demonstrates the benefit of prop-
erly combining existing DR/CR methods with JL projection.

7.4 Summary of Observations
Our experimental results imply the following observations:

• Solving k-means based on data summaries generated
by DR/CR methods can provide a reasonably good
solution at a drastically reduced communication cost
without incurring a high complexity at data sources.

• Compared with state-of-the-art algorithms, suitable
combination of DR and CR can effectively reduce
the communication cost and the complexity while
providing a k-means solution of a similar quality.

• Augmenting DR and CR with suitably configured
quantization can further reduce the communication
cost without adversely affecting the other metrics.

8 CONCLUSION

In this paper, we considered the problem of using data re-
duction methods to efficiently compute the k-means centers
for a large high-dimensional dataset located at remote data
source(s), with focus on DR and CR. Through a comprehen-
sive analysis of the approximation error, the communication
cost, and the complexity of various combinations of state-
of-the-art DR/CR methods, we proved that it is possible to
achieve a near-optimal approximation of k-means at a near-
linear complexity at the data source(s) and a very low (con-
stant or logarithmic) communication cost. In the process,
we developed algorithms based on carefully designed com-
binations of existing DR/CR methods that outperformed
two state-of-the-art algorithms in the scenarios of a single
data source and multiple data sources, respectively. We also
demonstrated how to combine DR/CR methods with quan-
tizers to further reduce the communication cost without
compromising the other performance metrics. Our findings
were validated through experiments on real datasets.

ACKNOWLEDGMENTS

This research was partly sponsored by the U.S. Army Re-
search Laboratory and the U.K. Ministry of Defence un-
der Agreement Number W911NF-16-3-0001. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.

Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] H. Lu, T. He, S. Wang, C. Liu, M. Mahdavi, V. Narayanan,
K. S. Chan, and S. Pasteris, “Communication-efficient k-means for
edge-based machine learning,” in ICDCS, November 2020.

[2] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless
network intelligence at the edge,” Proceedings of the IEEE, vol. 107,
no. 11, pp. 2204–2239, 2019.

[3] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained
edge computing systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 6, pp. 1205–1221, 2019.

[4] M. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in NIPS, December
2013.

[5] H. Lu, M.-J. Li, T. He, S. Wang, V. Narayanan, and K. S. Chan,
“Robust coreset construction for distributed machine learning,” in
IEEE Globecom, December 2019.

[6] H. Lu, M. Li, T. He, S. Wang, V. Narayanan, and K. S. Chan,
“Robust coreset construction for distributed machine learning,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 10,
pp. 2400–2417, 2020.

[7] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[8] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness
of Euclidean sum-of-squares clustering,” Machine Learning, vol. 75,
no. 2, pp. 245–248, 2009.

[9] M. Mahajan, P. Nimbhorkar, and K. R. Varadarajan, “The planar k-
means problem is NP-hard,” Theoretical Computer Science, vol. 442,
no. 13, pp. 13–21, 2012.

[10] K. Makarychev, Y. Makarychev, and I. Razenshteyn, “Performance
of Johnson-Lindenstrauss transform for k-means and k-medians
clustering,” in STOC, June 2019.

[11] D. Feldman, M. Schmidt, and C. Sohler, “Turning big
data into tiny data: Constant-size coresets for k-means,
PCA, and projective clustering,” 2018. [Online]. Available:
https://arxiv.org/abs/1807.04518

[12] K. Sayood, Introduction to Data Compression, Fourth Edition, 4th ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[13] A. Gersho and R. M. Gray, Vector quantization and signal compres-
sion. Springer Science & Business Media, 2012, vol. 159.

[14] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for
k-means clustering,” in NIPS, December 2010.

[15] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu,
“Dimensionality reduction for k-means clustering and low rank
approaximation,” in STOC, June 2015.

[16] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clus-
tering large graphs via the singular value decomposition,” Machine
Learning, vol. 56, no. 1-3, pp. 9–33, 2004.

[17] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas, “Ran-
domized dimensioinality reduction for k-means clustering,” IEEE
Trans. IT, vol. 61, no. 2, pp. 1045–1062, February 2015.

[18] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz map-
pings into a Hilbert space,” in Conference in Modern Analysis and
Probability, 1982.

[19] S. Har-Peled and S. Mazumdar, “On coresets for k-means and k-
median clustering,” in STOC, 2004.

[20] G. Frahling and C. Sohler, “Coresets in dynamic geometric data
streams,” in STOC, 2005.

[21] S. Har-Peled and A. Kushal, “Smaller coresets for k-median and
k-means clustering,” Discrete & Computational Geometry, vol. 37,
no. 1, pp. 3–19, 2007.

[22] K. Chen, “On coresets for k-median and k-means clustering in
metric and Euclidean spaces and their applications,” SIAM Journal
on Computing, vol. 39, no. 3, pp. 923–947, 2009.

[23] M. Langberg and L. J. Schulman, “Universal ε approximators for
integrals,” in SODA, 2010.

[24] D. Feldman and M. Langberg, “A unified framework for approxi-
mating and clustering data,” in STOC, June 2011.

14

[25] V. Braverman, D. Feldman, and H. Lang, “New frameworks
for offline and streaming coreset constructions,” CoRR, vol.
abs/1612.00889, 2016.

[26] A. Barger and D. Feldman, “k-means for streaming and dis-
tributed big sparse data,” in SDM, 2016.

[27] M. F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff,
“Improved distributed principal component analysis,” in NIPS,
December 2014.

[28] Y. Mao, Z. Xu, P. Ping, and L. Wang, “An optimal distributed k-
means clustering algorithm based on CloudStack,” in International
Conference on Frontier of Computer Science and Technology, August
2015.

[29] M. C. Naldi and R. J. G. B. Campello, “Distributed k-means
clustering with low transmission cost,” in Brazilian Conference on
Intelligent Systems, October 2013.

[30] C. R. Giannella, H. Kargupta, and S. Datta, “Approximate dis-
tributed k-means clustering over a peer-to-peer network,” IEEE
Trans. KDE, vol. 21, pp. 1372–1388, October 2009.

[31] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and
Applications. Springer, 2003.

[32] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in ACM STOC, 1998.

[33] D. Achlioptas, “Database-friendly random projections: Johnson-
Lindenstrauss with binary coins,” Journal of Computer and System
Sciences, vol. 66, no. 4, pp. 671–687, 2003.

[34] B. Klartag and S. Mendelson, “Empirical processes and random
projections,” Journal of Functional Analysis, vol. 225, no. 1, pp. 229–
245, August 2005.

[35] M. F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff,
“Improved distributed principal component analysis,” 2014.
[Online]. Available: https://arxiv.org/abs/1408.5823

[36] A. Aggarwal, A. Deshpande, and R. Kannan, “Adaptive sampling
for k-means clustering,” in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques. Springer, 2009,
pp. 15–28.

[37] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Learnability and the vapnik-chervonenkis dimension,” Journal of
the ACM (JACM), vol. 36, no. 4, pp. 929–965, 1989.

[38] Y. Li, P. M. Long, and A. Srinivasan, “Improved bounds on the
sample complexity of learning,” Journal of Computer and System
Sciences, vol. 62, no. 3, pp. 516–527, 2001.

[39] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, 1998.

[40] V. Perrone, P. A. Jenkins, D. Spano, and Y. W. Teh, “Pois-
son random fields for dynamic feature models,” arXiv preprint
arXiv:1611.07460, 2016.

[41] IEEE, “754-2019 - ieee standard for floating-
point arithmetic,” 2019. [Online]. Available:
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227

[42] A. Aggarwal, A. Deshpande, and R. Kannan, “Adaptive sampling
for k-means clustering,” in APPROX, August 2009.

Hanlin Lu (S’19) received the Ph.D. degree in
Computer Science and Engineering from Penn-
sylvania State University in 2021. He is currently
a Research Scientist at ByteDance, Mountain
View, CA, USA. His research interests include
coreset construction and distributed machine
learning training.

Ting He (SM’13) is an Associate Professor in the
School of Electrical Engineering and Computer
Science at Pennsylvania State University, Uni-
versity Park, PA. Her work is in the broad areas
of computer networking, network modeling and
optimization, and machine learning. Dr. He is a
senior member of IEEE, an Associate Editor for
IEEE Transactions on Communications (2017-
2020) and IEEE/ACM Transactions on Network-
ing (2017-2021), a TPC Co-Chair of IEEE IC-
CCN (2022), and an Area TPC Chair of IEEE IN-

FOCOM (2021). She received multiple Outstanding Contributor Awards
from IBM, multiple awards for Military Impact, Commercial Prosperity,
and Collaboratively Complete Publications from ITA, and multiple paper
awards from ICDCS, SIGMETRICS, ICASSP, and IEEE Communica-
tions Society.

Shiqiang Wang (S’13–M’15) received his Ph.D.
from the Department of Electrical and Electronic
Engineering, Imperial College London, United
Kingdom, in 2015. Before that, he received his
master’s and bachelor’s degrees at Northeast-
ern University, China, in 2011 and 2009, respec-
tively. He has been a Research Staff Member
at IBM T. J. Watson Research Center, NY, USA
since 2016. In the fall of 2012, he was at NEC
Laboratories Europe, Heidelberg, Germany. His
current research focuses on the interdisciplinary

areas in distributed computing, machine learning, networking, optimiza-
tion, and signal processing. Dr. Wang served as a technical program
committee (TPC) member of several international conferences, includ-
ing ICML, NeurIPS, ICDCS, AISTATS, IJCAI, IFIP Networking, IEEE
GLOBECOM, IEEE ICC, and as an associate editor of the IEEE Trans-
actions on Mobile Computing. He received the IEEE Communications
Society Leonard G. Abraham Prize in 2021, IBM Outstanding Techni-
cal Achievement Award (OTAA) in 2019 and 2021, multiple Invention
Achievement Awards from IBM since 2016, Best Paper Finalist of the
IEEE International Conference on Image Processing (ICIP) 2019, and
Best Student Paper Award of the Network and Information Sciences
International Technology Alliance (NIS-ITA) in 2015.

Changchang Liu received the Ph.D. degree in
electrical engineering from Princeton University.
She is currently a Research Staff Member with
the Department of Distributed AI, IBM Thomas
J. Watson Research Center, Yorktown Heights,
NY, USA. Her current research interests include
federated learning, big data privacy, and security.

Mehrdad Mahdavi is an Assistant Professor of
the Computer Science Department at the Penn
State. He received the Ph.D. degree in Computer
Science from Michigan State University in 2014.
Before joining PSU in 2018, he was a Research
Assistant Professor at Toyota Technological In-
stitute, at University of Chicago. His research
interests lie at the interface of machine learn-
ing and optimization with a focus on developing
theoretically principled and practically efficient
algorithms for learning from massive datasets

and complex domains. He has won the Mark Fulk Best Student Paper
award at Conference on Learning Theory (COLT) in 2012.

15

Vijaykrishnan Narayanan (F’11) is the Robert
Noll Chair Professor of Computer Science and
Engineering and Electrical Engineering at the
Pennsylvania State University. His research in-
terests are in Embedded System Design, Com-
puter Architecture and Power-Aware Systems.
He is a fellow of National Academy of Inventors,
IEEE, and ACM.

Kevin S. Chan (S’02–M’09–SM’18) received the
B.S. degree in electrical and computer engi-
neering and engineering and public policy from
Carnegie Mellon University, Pittsburgh, PA, USA
and the M.S. and Ph.D. degrees in electrical and
computer engineering from the Georgia Institute
of Technology, Atlanta, GA, USA. He is currently
an Electronics Engineer with the Computational
and Information Sciences Directorate, U.S. Army
Combat Capabilities Development Command,
Army Research Laboratory, Adelphi, MD, USA.

He is actively involved in research on network science, distributed ana-
lytics, and cybersecurity. He received the 2021 IEEE Communications
Society Leonard G. Abraham Prize and multiple best paper awards.
He is the Co-Editor of the IEEE Communications Magazine—Military
Communications and Networks Series.

Stephen Pasteris gained a BA+MA in Math-
ematics from Kings College of the University
of Cambridge. After completing his BA he then
went on to gain a PhD in Computer Science from
University College London: his thesis focusing
on the development of efficient algorithms for
machine learning on networked data. Stephen is
now a Research Associate at University College
London where he primarily researches online
machine learning.

