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Abstract—Caches are pervasively used in communication net-
works to speed up content access by reusing previous communi-
cations, where various replacement policies are used to manage
the cached contents. The replacement policy of a cache plays a
key role in its performance, and is thus extensively engineered
to achieve a high hit ratio in benign environments. However,
some studies showed that a policy with a higher hit ratio in
benign environments may be more vulnerable to cache pollution
attacks that intentionally send requests for unpopular contents.
To understand the cache performance under such attacks, we
analyze a suite of representative replacement policies under the
framework of TTL approximation in how well they preserve
the hit ratios for legitimate users, while incorporating the delay
for the cache to obtain a missing content. We further develop
a scheme to adapt the cache replacement policy based on the
perceived level of attack. Our analysis and validation on real
traces show that although no single policy is resilient to all the
attack strategies, suitably adapting the replacement policy can
notably improve the attack resilience of the cache. Motivated by
these results, we implement selected policies as well as policy
adaptation in an open-source SDN switch to manage flow rule
replacement, which is shown to notably improve its resilience to
pollution attacks.

Index Terms—cache replacement, access delay, cache pollution
attack, attack resilience, TTL approximation.

I. INTRODUCTION

As one of the most widely-applied techniques in com-
puter systems, caching can significantly boost system per-
formance by storing and reusing previous computation or
communication results. In the networking context, caches can
serve requests close to the users, and thus reduce content
access latency, network traffic load, and server workloads.
Because of these benefits, they have been widely deployed
in a variety of systems, e.g., World Wide Web (WWW) [2],
Content Delivery Networks (CDNs) [3], Information Centric
Networking (ICN) [4], and Domain Name System (DNS) [5].
In the emerging paradigm of Software Defined Networking
(SDN), caches called flow tables are used to store controller
instructions to alleviate the data-control plane bottleneck.
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An attractive property of caches is that they are plug-and-
play components that automatically adapt their contents to
the current needs. At the core of this adaptation is a suite
of replacement policies that decide which contents to evict to
make room for new contents. There is a long series of works
on developing and analyzing cache replacement policies, from
simple First In First Out (FIFO) or Least Recently Used
(LRU) to sophisticated policies involving virtual caches and
multiple stages [6], [7]. However, most existing works only
considered the performance in benign environments, where all
the requests are from legitimate users.

Meanwhile, empirical studies in [8], [9] revealed that a
policy with superior performance in benign environments can
perform poorly under a type of DoS attacks, referred to as
cache pollution attack, that flood the cache with requests for
unpopular contents, thus denying the legitimate users their
chance to receive service from the cache [10]. For example,
the Least Frequently Used (LFU) policy that is known to
be optimal in the benign environment under the Independent
Reference Model (IRM) [7] performs worse than LRU under
such attacks [8], [9], which is in turn worse than FIFO [9].

Motivated by these observations, we perform a compre-
hensive study of the attack resilience of cache replacement
policies in the context of communication networks. As an
important aspect of general network resilience [11], attack
resilience is the ability to maintain an acceptable level of
service in the presence of attacks, where our focus is on
the ability of cache replacement policies to maintain the
hit ratio for legitimate requests in the presence of pollution
attacks. Performance under attacks is important because (i)
an attack can be long-lasting, and (ii) there can be frequent
intermittent attacks, both causing the network to operate under
attacks for a significant fraction of time. To quantify the attack
resilience of cache replacement policies, we analyze the hit
ratios of representative policies using the tool of Time-to-
Live (TTL) approximations while incorporating content access
delays. Such approximations not only allow us to explain how
pollution attacks affect the hit ratio of legitimate requests, but
also shed light on the attack strategies and the defenses.

A. Related Work

Cache Replacement Policies: At a high level, cache
replacement policies can be classified into capacity-driven
policies, where a cached content is only evicted to make room
for new content, and TTL-based policies, where a cached
content is evicted after its TTL expires [12]. Traditionally,
most policies are capacity-driven as they fully utilize the



2

cache space, which can be further classified into recency-based
policies (e.g., FIFO, LRU), frequency-based policies (e.g.,
LFU), randomized policies, and policies based on application-
specific attributes (e.g., sizes, functions) [2]. However, when
maintaining consistency with the origin server is important,
e.g., in DNS and WWW, TTL-based policies are popular [12].
In cases such as SDN, a combination of both types of policies
is used [13]. The common objective of these policies is to
maximize the cache hit ratio.

The performance of a single cache has been extensively
studied. As exact analysis is difficult [6], various approxima-
tions have been developed, most notably the TTL approx-
imation that models capacity-driven policies by TTL-based
policies [14]. This idea has been used to predict the hit ratio
for a number of capacity-driven policies, including FIFO,
Random, LRU, and their variations [15], [7], [6]. The request
processes under which these approximations apply have also
been generalized from Poisson processes (i.e., IRM) [14] to
renewal processes [7], Markov processes [6], and general
stationary processes [16]. Besides known to be numerically
accurate, TTL approximations are also shown to be asymptot-
ically exact for large caches [17], [6], [16].

Application of cache replacement policies have also been
studied in various systems, e.g., WWW [2], CDN [3], ICN [4],
and DNS [5]. Many of these systems employ a network of
interconnected caches, for which analytical results have been
obtained under TTL approximations [5], [12], [18].

Most works on cache performance analysis assumed
that a content is immediately available at the cache after
a miss, which causes modeling error when the cache has
non-negligible content access delays. This problem was first
realized in [19], where new TTL approximations incorporating
such delays were derived for FIFO, Random, and LRU. We
will extend such analysis to a larger set of policies.

Attacks on Caches and Defenses: Caches have been
the common targets of malicious attacks. In the networking
context, caches can be used to extract private information [20],
[21], [9], but the focus has been on degrading the cache per-
formance by overwhelming its capacity [20], [22], [23], [24],
[25] or occupying it with unpopular contents [20], [8], [26],
[9], both effectively denying service to legitimate requests.

As for defenses, existing works mostly focused on us-
ing system-specific countermeasures to prevent/mitigate at-
tacks (e.g., [27] for DNS, [28], [29] for ICN, [21], [22],
[23], [24], [25] for SDN) or detecting attacks [30], [31], [8].
In contrast, we aim at understanding the attack resilience
of the cache itself. Although attack resilience of caches has
been briefly discussed in [32], [26], [32] only considered
one attack strategy (similar to mice-flow attack considered
in Section IV-A), and [26] only considered one replacement
policy (FIFO), leaving open important questions such as: (i)
How do popular replacement policies compare in terms of
attack resilience? (ii) How does this comparison depend on the
attack strategy? (iii) Is there a policy that is resilient to all the
attack strategies? We will develop a tool (TTL approximation)
to answer these questions analytically and provide explicit
answers for representative policies and attack strategies.

B. Summary of Contributions

Our contributions are five-fold:
1) We extend the TTL approximation to incorporate the

delays for the cache to obtain missing contents for a set
of policies known to have superior performance in benign
environments [7]. We further discuss the impact of idle/hard
timeouts on TTL approximation and extend our analysis to
capture such impact. These results advance the state of the art
on TTL approximation, which is of independent interest.

2) We use the obtained formulas to analyze the optimal
attack strategy under a fixed total attack rate and its impact
on the cache performance for legitimate requests.

3) Observing that the best policy under different attack
strategies can be different, we propose a scheme to adapt the
replacement policy based on coarse parameters of the attack.

4) Treating the flow table in an SDN switch as the cache of
interest, we perform a simulation-based performance evalua-
tion. Besides confirming the accuracy of our analysis and the
efficacy of the proposed policy adaptation scheme, our results
also reveal relatively good resilience of two-staged policies,
especially the one with FIFO eviction rule.

5) We implement selected policies as well as runtime policy
adaptation to manage flow rule replacement in Open vSwitch.
Our experiments in a virtual SDN based on real traces show
that the added policies have notably better resilience than the
original rule replacement policy under certain attacks, and the
proposed policy adaptation scheme can further improve the
resilience to time-varying attacks.

Roadmap. We will formulate our problem in Section II,
present our TTL approximation results in Section III, analyze
the optimal attack strategy and its impact in Section IV, present
our attack-aware policy selection scheme in Section V, present
our simulation results in Section VI and our experiment results
in Section VII, and conclude the paper in Section VIII. All
appendices can be found in the supplementary file.

II. PROBLEM FORMULATION

A. Request Arrival Model

Let F denote the set of all possible contents requested from
the cache. Among these, a subset Fl contains the contents of
interest to legitimate users, and its complement Fa contains
the contents requested by the adversary during a pollution
attack. We assume that Fl∩Fa = ∅ as an intelligent adversary
will never request anything of interest to legitimate users. We
will use the Independent Reference Model (IRM) to obtain
closed-form results, and discuss the generalization to arbitrary
renewal processes when applicable.

Under IRM, the requests for each content f ∈ F arrive
according to an independent Poisson process with rate λf .
Under the renewal model, the requests for each f ∈ F arrive
according to an independent renewal process with inter-arrival
distribution Gf (y), i.e., the i-th inter-arrival time Yi satisfies
Pr{Yi ≤ y} = Gf (y) for all y ≥ 0. Let G̃f (y|t) denote the
distribution function of the excess life at time t, i.e., if Γt is the
time from t to the next arrival, then Pr{Γt ≤ y} = G̃f (y|t)
for all y ≥ 0. Let mf (t) denote the renewal function, defined
as the expected number of arrivals in (0, t]. In the sequel, we
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will simply use “flow” to refer to a sequence of requests for
the same content. Accordingly, we also refer to F as the set
of all the incoming flows to the cache, Fl as the subset of
legitimate flows, and Fa as the subset of attack flows.

B. Cache Model

Suppose that the cache under consideration has size C,
measured in the number of distinct contents it can store.
We adopt the common assumption that all contents are of
equal size, as variable-sized contents can be split into equal-
sized chunks for caching. When the cache is full, the cached
contents are dynamically updated by its replacement policy.
We consider a set of such policies as follows:
• FIFO: The First In First Out (FIFO) policy makes room

for a new content by evicting the oldest cached content.
• Random: This policy evicts a randomly selected cached

content to make room for a new content.
• LRU: The Least Recently Used (LRU) policy makes

room for a new content by evicting the cached content
that has not been requested for the longest time.

• q-LRU: This is a variation of LRU that only inserts a
newly requested content into the cache with probability q.

• LRU-2: This is a two-staged policy that maintains a vir-
tual cache (cache 1) storing content IDs and a real cache
(cache 2) storing the actual contents, both employing
the eviction rule of LRU. Each requested content ID not
already in the virtual cache will be inserted into the virtual
cache, but a requested content not already in the real
cache will be inserted into the real cache if and only if its
ID is already in the virtual cache. This policy can be ex-
tended to k > 1 caches, known as LRU-k, where caches
1, . . . , k−1 are virtual caches and cache k is a real cache.

• FIFO-2: This is a two-staged policy similar to LRU-2,
except that the eviction rule at each cache is FIFO.

• Random-2: This is another two-staged policy, except
that the eviction rule at each cache is Random.

These policies can all be considered traffic-oblivious ap-
proximations to the Least Frequently Used (LFU) policy that
statically stores the most popular contents, as LFU requires
prior knowledge of content popularity. In a benign environ-
ment, LFU is known to have superior performance (optimal
under IRM) [7], and some of the above policies can approxi-
mate LFU without requiring prior knowledge. Specifically, q-
LRU tends to LFU as q → 0, and LRU-k tends to LFU as k →
∞, with much of the performance gain achieved at k = 2 [7].

While traditional cache performance analysis assumes that a
content is immediately available at the cache after a miss1, we
consider a scenario more practical for network caches, where
before inserting a missing content, the cache must first obtain
the content from its origin server, which incurs a (possibly
random) delay D referred to as the access delay. During the
access delay, new requests of this content will incur misses
but not generate further requests to the origin server. Let D̄
denote the mean access delay.

1Equivalently, each missing content will be available at the cache before
the next request arrives.

C. Objective

Our primary objective is to quantify the attack resilience
of existing replacement policies in terms of how well they
can preserve the hit ratios for legitimate users under pollution
attacks, and develop new policies with better attack resilience.
Our secondary objective is to advance the state of the art
on TTL approximation by incorporating access delays and
timeouts.

III. TTL APPROXIMATION WITH ACCESS DELAY

Traditional TTL approximation formulas [7] are based on
the assumption that the requested content is immediately
available to the cache after a miss, which is too simplistic
for network caches due to the access delay. It has been
shown [19] that the existence of access delay causes notable
deviation between the traditional TTL approximation and the
actual hit ratio, where new TTL approximation formulas were
developed to incorporate the impact of access delay for simple
replacement policies including FIFO, Random, and LRU.
Below, we will extend this study to a list of more sophisticated
state-of-the-art replacement policies, by providing closed-form
formulas under IRM (i.e., Poisson request arrivals) and gen-
eralizations under arbitrary renewal arrivals.

A. Review of Existing Results

In the presence of access delays, the following TTL approx-
imations have been developed by [19]:
• FIFO: A FIFO cache can be modeled as a TTL cache with

constant non-reset timers of timeout T [33]. Under Poisson
arrivals, the hit ratio and the occupancy probability for content
f are

hFIFO
f = oFIFO

f =
λfT

1 + λf (D̄ + T )
. (1)

Under renewal arrivals, the hit ratio is

hFIFO
f =

E[mf (D + T )]− E[mf (D)]

1 + E[mf (D + T )]
, (2)

and the occupancy probability is

oFIFO
f =

T

D̄ + T + E[Γf (D + T )]
, (3)

where

E[Γf (D + T )] = E
[∫ ∞

0

(
1− G̃f (t|D + T )

)
dt

]
(4)

is the expected excess life for the arrival process of requests
for content f at time D + T . The expectations in (2) and (4)
are over D.
• Random: A Random cache can be modeled as a TTL

cache with exponentially distributed non-reset timers with
mean timeout T̄ [33]. Under Poisson arrivals, the hit ratio
and the occupancy probability for content f are

hRandom
f = oRandom

f =
λf T̄

1 + λf (D̄ + T̄ )
, (5)

which is identical to (1) except that T is replaced by T̄ . Under
renewal arrivals, the hit ratio and the occupancy probability
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Fig. 1. Renewal period under q-LRU.

are the same as (2) and (3), respectively, except that the
expectations are over both D and T (which is exponentially
distributed with mean T̄ ).
• LRU: An LRU cache can be modeled as a TTL cache

with constant reset timers of timeout T [33]. Under Poisson
arrivals, the hit ratio and the occupancy probability for content
f are

hLRU
f = oLRU

f =
eλfT − 1

λf D̄ + eλfT
. (6)

Under renewal arrivals, this hit ratio is

hLRU
f =

E[G̃f (T |D)]

(1−Gf (T ))(1 + E[mf (D)]) + E[G̃f (T |D)]
, (7)

and the occupancy probability is

oLRU
f =

λfE[Γf (D)] + E[Nf ]− λfE[Γf (Te)]

1 + E[mf (D)] + E[Nf ]
, (8)

where E[Γf (D)] and E[Γf (Te)] are defined similarly as (4)
(Te: the content eviction time from the beginning of a renewal
period), and

E[Nf ] =
E[G̃f (T |D)]

1−Gf (T )
(9)

is the expected number of hits per renewal period. The
expectations are over D and Te.

Here, the parameter T (or T̄ ), known as the characteristic
time, can be computed from the characteristic equation:∑

f∈F

of = C. (10)

B. TTL Approximation for q-LRU

The basic observation is that under renewal arrivals, the re-
sponses of the cache form renewal periods that are statistically
identical to each other, and thus it suffices to analyze the hit
ratio within a single renewal period. Below we will focus on
a single content f as the analysis is identical for all contents.

As illustrated in Fig. 1, each renewal period starts when the
cache forwards a request to the origin server and ends right
before the next request that is forwarded to the origin server.
Each period contains three stages: (i) stage 1 is the time D
when the cache is waiting for the requested content from the
origin server, during which all incoming requests will incur
misses, (ii) stage 2 is from the arrival of the content to (right
before) the next miss, during which all incoming requests will
incur hits, and (iii) stage 3 is from this miss to (right before)
the next request from the cache to the origin server, during
which all incoming requests will again incur misses. In the

sequel, let Xi (i = 1, 2, 3) denote the number of incoming
requests in stage i. The hit ratio for f is thus

hf =
E[X2]

E[X1] + E[X2] + E[X3]
. (11)

Furthermore, let Yi,j denote the inter-arrival time between
the j-th request in stage i and the next request. By definition
of the renewal period, its duration equals D + Γf (D) +∑3
i=2

∑Xi
j=1 Yi,j , during which content f is cached for time

Γf (D) +
∑X2

j=1 Y2,j −Γf (Te), where Γf (D) denotes the time
from the arrival of the requested content to the first hit (i.e.,
the excess life at time D, if the period starts from time 0), and
Γf (Te) denotes the time from the eviction of the content to
the next request (i.e., the excess life at the eviction time Te).
The occupancy probability is thus

of =
E[Γf (D) +

∑X2

j=1 Y2,j − Γf (Te)]

E[D + Γf (D) +
∑3
i=2

∑Xi
j=1 Yi,j ]

=
E[Γf (D)] + 1

λf
E[X2]− E[Γf (Te)]

D̄ + E[Γf (D)] + 1
λf

E[X2] + 1
λf

E[X3]
, (12)

where we have applied Wald’s identity to
∑X2

j=1 Y2,j and∑X3

j=1 Y3,j as X2 is a stopping time for {Y2,1, Y2,2, . . .}
(X2 ≤ n if and only if ∃1 ≤ j ≤ n such that Y2,j > T )
and X3 is independent of {Y3,1, Y3,2, . . .}.

1) Poisson Arrivals: For stage 1, it is easy to see that
E[X1] = 1+λf D̄, where the ‘1’ accounts for the arrival at the
beginning of the period. For stage 2, since q-LRU behaves the
same as LRU under hits and an LRU cache behaves like a TTL
cache with reset timers and a constant timeout T [33], each
new request generates a hit if and only if it arrives no later than
T after the previous request, which occurs with probability
1− e−λfT . Thus,

Pr{X2 = n} = (1− e−λfT )ne−λfT , n = 0, 1, . . . , (13)

and E[X2] = eλfT − 1. For stage 3, we know that by
its definition, a q-LRU cache will only request the missing
content from the origin server (to insert it into the cache) with
probability q upon a miss, and thus the number of consecutive
misses before the cache requests the content from the origin
server is distributed as

Pr{X3 = m} = (1− q)mq, m = 0, 1, . . . , (14)

and E[X3] = (1−q)/q. Plugging these results into (11) yields

hq-LRU

f =
eλfT − 1

λf D̄ + eλfT + 1−q
q

, (15)

which reduces to (6) as q → 1 as expected. The parameter T
in (15) can be solved from

∑
f∈F h

q-LRU

f = C as oq-LRU

f = hq-LRU

f

under Poisson arrivals.
2) Renewal Arrivals: Without loss of generality, assume

that t = 0 at the beginning of the renewal period under
consideration. For stage 1, it is easy to see that E[X1] =
1 + E[mf (D)], where the expectation is over D. For stage 2,
each new request generates a hit if and only if it arrives no later
than T after the timer resets, and the time between an arrival
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and the most recent timer reset is the excess life at D for the
first arrival in stage 2 and an inter-arrival time thereafter. Thus,

Pr{X2=n|D}=
{

1− G̃f (T |D) if n = 0,

G̃f (T |D)Gf (T )n−1(1−Gf (T )) o.w.,
(16)

and hence E[X2] = E[G̃f (T |D)]/(1 − Gf (T )), where the
expectation is over D. For stage 3, we still have E[X3] =
(1 − q)/q, as the number of consecutive misses before a q-
LRU cache requests the content from the origin server (i.e.,
X3) does not depend on the arrival process. Plugging these
results into (11) yields

hq-LRU

f =

E[G̃f (T |D)]
1−Gf (T )

1 + E[mf (D)] +
E[G̃f (T |D)]
1−Gf (T ) + 1−q

q

, (17)

where the only unknown parameter is T . Based on (12), T
can be obtained by solving (10) for

oq-LRU

f =
E[Γf (D)] +

E[G̃f (T |D)]
λf (1−Gf (T )) − E[Γf (Te)]

D̄ + E[Γf (D)] +
E[G̃f (T |D)]
λf (1−Gf (T )) + 1−q

λfq

. (18)

Discussion: Predicting the hit ratio using the TTL approx-
imation for general renewal processes is mainly complicated
by the need of computing the expected excess life. In par-
ticular, E[Γf (Te)] in general depends on the distribution of
the eviction time Te, which is not analytically tractable as
Te = D + Γf (D) +

∑X2−1
j=1 Y2,j + T . Therefore, as in the

literature, closed-form formulas have only been obtained for
Poisson processes.

C. TTL Approximation for LRU-2

For a multi-staged policy such as LRU-k, the cache at each
stage has its own renewal periods that are approximately inde-
pendent across stages due to the vastly different characteristic
times at different stages [7]. Below, we give detailed analysis
for k = 2, and defer the general case to Appendix.A.

As illustrated in Fig. 2, each renewal period of cache 2 (the
real cache) is the time between consecutive requests to the
origin server, and consists of three stages defined as in Sec-
tion III-B. The difference is that an incoming request triggers
an outgoing request to the origin server if and only if it results
in a miss in cache 2 and a hit in cache 1 (the virtual cache).

1) Poisson Arrivals: The analysis for stages 1 and 2 re-
mains the same as in Section III-B1, as the real cache behaves
the same in these stages. That is, E[X1] = 1 + λf D̄ and
E[X2] = eλfT2 − 1, where T2 is the characteristic time of
cache 2. For stage 3, we see by the definition of LRU-2 that
X3 is the number of consecutive misses in cache 1 before the
next hit, which will trigger an outgoing request to the origin
server and the starting of a new period. Since cache 1 is an
LRU cache without access delay (as it only stores content
IDs), we know from [33] that it behaves like a TTL cache
with constant reset timers T1, which denotes its characteristic
time. Moreover, as long as T2 ≥ T1, which holds when the
two caches have the same size [7], [34], the first request in
stage 3 must result in a miss in cache 1 because it arrives later
than T2 after the previous request (which is why stage 3 has
started) and T2 ≥ T1. Thus,

Pr{X3 − 1 = m} = e−mλfT1(1− e−λfT1), m ≥ 0, (19)

and hence E[X3] = 1/(1 − e−λfT1). Plugging these results
into (11) yields

hLRU-2
f =

eλfT2 − 1

λf D̄ + eλfT2 + 1

1−e−λfT1

. (20)

Here, T1 is the solution to the characteristic equation of
cache 1:

∑
f∈F h

LRU
f = C1 (C1: size of cache 1), where there

is no access delay, and T2 is the solution to the characteristic
equation of cache 2:

∑
f∈F h

LRU-2
f = C, where we have used

the PASTA property of Poisson processes.
2) Renewal Arrivals: By similar arguments, we see from

Section III-B2 that E[X1] = 1 + E[mf (D)] for stage 1, and
E[X2] = E[G̃f (T2|D)]/(1−Gf (T2)) for stage 2, where both
expectations are over D. For stage 3, the above analysis shows
that X3 − 1 is the number of consecutive inter-arrival times
in this stage that are greater than T1, the timeout value of the
TTL approximation of cache 1. Thus,

Pr{X3 − 1 = m} = (1−Gf (T1))mGf (T1), m ≥ 0, (21)

and hence E[X3] = 1/Gf (T1). Plugging these results into (11)
yields

hLRU-2
f =

E[G̃f (T2|D)]
1−Gf (T2)

1 + E[mf (D)] +
E[G̃f (T2|D)]
1−Gf (T2) + 1

Gf (T1)

, (22)

where T1 and T2 are the characteristic times of cache 1 and
cache 2, respectively.

Furthermore, by similar arguments as in Section III-B, the
occupancy probability in cache 2 equals

oLRU-2
f =

E[Γf (D)] + 1
λf

E[X2]− E[Γf (Te)]

D̄ + E[Γf (D)] + 1
λf

E[X2] + 1
λf

E[X3]
(23)

=
E[Γf (D)] +

E[G̃f (T2|D)]
λf (1−Gf (T2)) − E[Γf (Te)]

D̄ + E[Γf (D)] +
E[G̃f (T2|D)]
λf (1−Gf (T2)) + 1

λfGf (T1)

, (24)

where we can apply Wald’s identity because X2 is a stopping
time for {Y2,1, Y2,2, . . .} as in Section III-B and X3 is a
stopping time for {Y3,1, Y3,2, . . .} (X3 ≤ n if and only if
∃1 ≤ j ≤ n such that Y3,j ≤ T1). We can solve T1 by plugging
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Fig. 3. Renewal period under FIFO-2.

the occupancy probability in cache 1, given by (8) for D = 0,
into

∑
f∈F o

LRU
f = C1. We can then solve T2 by plugging (24)

(which now only has T2 as an unknown parameter) into (10).

D. TTL Approximation for FIFO-2

Our analysis in Section III-C extends naturally to other two-
staged policies employing different eviction rules. Specifically,
FIFO-2, as illustrated in Fig. 3, has renewal periods and three
stages per renewal period that are defined in the same way as
in Section III-C. The difference is that each cache follows the
FIFO eviction rule.

1) Poisson Arrivals: For stage 1, we again have E[X1] =
1 +λf D̄. For stage 2, as cache 2 behaves the same as a FIFO
cache upon hits, which in turns behaves like a TTL cache
with constant non-reset timers [33], this stage has a fixed
duration T2 (the characteristic time of cache 2), during which
the expected number of incoming requests is E[X2] = λfT2.
For stage 3, again by the definition of two-staged policies,
the number of requests X3 in this stage is the number of
consecutive misses in cache 1. Here, cache 1 is a FIFO
cache without access delay, which behaves like a TTL cache
with constant non-reset timers T1 (the characteristic time of
cache 1) [33]. Different from LRU-2, the first request in stage 3
may result in a hit in cache 1 (which triggers a request to the
origin server and starts a new period), as there is no guaranteed
gap between the last arrival in stage 2 and the first arrival
in stage 3. Under the assumption that the two caches are
independent (because T2 is usually much larger than T1) [7],
this occurs with a probability equal to the hit ratio of cache 1,
which is λfT1/(1 + λfT1) by (1). Conditioned on the first
request in stage 3 incurring a miss in cache 1, each subsequent
request incurs a miss in cache 1 if and only if the time between
it and the previous request is greater than T1, which occurs
with probability e−λfT1 . Thus,

Pr{X3 = m}=

{ λfT1

1+λfT1
if m = 0,

e−(m−1)λfT1 (1−e−λfT1 )
1+λfT1

if m > 0,
(25)

and hence E[X3] = 1/[(1 + λfT1)(1 − e−λfT1)]. Plugging
these results into (11) yields

hFIFO-2
f =

λfT2

1 + λf (D̄ + T2) + 1

(1+λfT1)(1−e−λfT1 )

. (26)

Here, T1 is solvable from cache 1’s characteristic equation:∑
f∈F h

FIFO
f = C1 (C1: size of cache 1), and T2 is solvable

from cache 2’s characteristic equation:
∑
f∈F h

FIFO-2
f = C, both

based on the PASTA property of Poisson processes.

2) Renewal Arrivals: Under renewal arrivals, similar ar-
guments show that E[X1] = 1 + E[mf (D)] for stage 1,
and E[X2] = E[mf (D + T2)] − E[mf (D)] for stage 2,
both expectations over D. For stage 3, the arguments in
Section III-D1 show that

Pr{X3 = m}=

{
mf (T1)

1+mf (T1) if m = 0,
1

1+mf (T1) (1−Gf (T1))m−1Gf (T1) o.w.,
(27)

where mf (T1)/(1 +mf (T1)) is the hit ratio of cache 1
obtained from (2) (where D = 0). Thus, E[X3] = 1/[(1 +
mf (T1))Gf (T1)]. Plugging these results into (11) yields

hFIFO-2
f =

E[mf (D + T2)]− E[mf (D)]

1 + E[mf (D + T2)] + 1
(1+mf (T1))Gf (T1)

, (28)

where T1 and T2 are characteristic times of cache 1 and
cache 2, respectively.

To computer the characteristic times, we note that the
expected duration of a renewal period equals

E

D + T2 + Γf (D + T2) +

X3∑
j=1

Y3,j


= D̄ + T2 + E[Γf (D + T2)] +

1

λf
E[X3], (29)

where we have applied Wald’s identity. During each period,
the content occupies cache 2 for time T2. Thus, the occupancy
probability in cache 2 is given by

oFIFO-2
f =

T2

D̄ + T2 + E[Γf (D + T2)] + 1
λf

E[X3]
(30)

=
T2

D̄ + T2 + E[Γf (D + T2)] + 1
λf (1+mf (T1))Gf (T1)

. (31)

We can first solve T1 from
∑
f∈F o

FIFO
f = C1, where oFIFO

f =
T1/ (T1 + E[Γf (T1)]) is the occupancy probability in cache 1,
and then solve T2 by plugging (31) into (10).

E. TTL Approximation for Random-2

The analysis for Random-2 is very similar to that for FIFO-
2, as both a FIFO cache and a Random cache behave like TTL
caches with non-reset timers [33]. The difference, however, is
that the timeout values for a Random cache are exponentially
distributed (instead of being a constant as for FIFO), with a
mean that equals the cache characteristic time. Specifically,
each renewal period of Random-2 is still structured as in
Fig. 3, except that T2 and T1 are exponential random vari-
ables2, with means T̄2 and T̄1 that are the characteristic times
of cache 2 and cache 1, respectively.

1) Poisson Arrivals: Similar to Section III-D1, we have
E[X1] = 1 +λf D̄, and E[X2] = λf T̄2. However, the analysis
of X3 is different. Under the independence assumption of the
two caches [7], the first request in stage 3 results in a hit in
cache 1 (i.e., X3 = 0) with probability λf T̄1/(1 + λf T̄1),
i.e., the hit ratio of cache 1 according to (5). Otherwise, each

2More precisely, the TTL of each arrival into cache i (i = 1, 2) is an
independent exponential random variable with mean T̄i.
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subsequent request results in a miss in cache 1 if and only
if its inter-arrival time from the previous request is greater
than the TTL of the content ID inserted into cache 1 by the
previous request. Since the inter-arrival time and the TTL of
cache 1 are both exponentially distributed with means 1/λf
and T̄1, respectively, the inter-arrival time is greater than the
TTL with probability 1/(1 + λf T̄1). Thus,

Pr{X3 = m}=
(

1

1 + λf T̄1

)m(
λf T̄1

1 + λf T̄1

)
, m ≥ 0, (32)

which implies that E[X3] = 1/(λf T̄1). Plugging these results
into (11) yields

hRandom-2
f =

λf T̄2

1 + λf (D̄ + T̄2) + 1
λf T̄1

, (33)

where T̄1 is the solution to
∑
f∈F h

Random
f = C1 (C1: size of

cache 1), and T̄2 is the solution to
∑
f∈F h

Random-2
f = C. In

the special case of exponentially distributed access delays, a
more accurate TTL approximation can be computed without
the independence assumption; see details in Appendix.A.

2) Renewal Arrivals: Similar to Section III-D2, we have
E[X1] = 1 +E[mf (D)] for stage 1, and E[X2] = E[mf (D+
T2)] − E[mf (D)] for stage 2, except that the second ex-
pectation is over both D and T2. For stage 3, the argu-
ments in Section III-E1 show that X3 = 0 with probability
E[mf (T1)]/(1 + E[mf (T1)]) (expectation over T1), which is
the hit ratio of cache 1. Otherwise, for m ≥ 1,

Pr{X3=m}= E[Gf (T1)]

1 + E[mf (T1)]
(1− E[Gf (T1)])

m−1
, (34)

where 1− E[Gf (T1)] (expectation over T1) is the probability
for an inter-arrival time to be greater than the TTL of cache 1.
Thus, E[X3] = 1/((1 + E[mf (T1)])E[Gf (T1)]). Plugging
these results into (11) yields

hRandom-2
f =

E[mf (D + T2)]− E[mf (D)]

1 + E[mf (D + T2)] + 1
(1+E[mf (T1)])E[Gf (T1)]

,

(35)

where the only unknown parameters are the means T̄i of Ti
for i = 1 and 2.

Moreover, by similar arguments as in Section III-D2, the
occupancy probability in cache 2 equals

oRandom-2
f =

T̄2

D̄ + T̄2 + E[Γf (D + T2)] + 1
λf

E[X3]
(36)

=
T̄2

D̄ + T̄2 + E[Γf (D + T2)] + 1
λf (1+E[mf (T1)])E[Gf (T1)]

.

(37)

We can solve T̄1 from
∑
f∈F o

Random
f = C1, where oRandom

f =

T̄1/
(
T̄1 + E[Γf (T1)]

)
is the occupancy probability in cache 1.

We can then solve T̄2 by plugging (37) into (10).
Remark: Although seemingly similar, (28) and (35) (or (31)

and (37)) differ subtly in that Ti (i = 1, 2) is treated as a
constant for FIFO-2 but a random variable for Random-2,
which implies that generally FIFO-2 and Random-2 perform
differently in terms of hit ratio. They perform differently even

under IRM, as seen from (26) and (33). This result is in
contrast to the previous result that FIFO and Random have
the same hit ratio under IRM [7].

F. TTL Approximation with Explicit Timeouts

In some application scenarios (e.g., SDN), cached contents
are subject to explicit hard/idle timeouts, in addition to evic-
tions caused by newly inserted contents. Hereby we discuss the
impact of such explicit timeouts on the TTL approximation.
Denote the idle timeout by τI and the hard timeout by τH . A
cached content will be evicted if (i) it has been in the cache for
τH time, (ii) it has not been requested for τI time, or (iii) it is
selected to make room for a new content by the replacement
policy, whichever occurs first. We will focus on the case of
Poisson arrivals, which is already challenging to analyze as
explained below.

Recall that the hit ratio for a given content f can be
computed by (11) based on the expected number of arrivals
E[Xi] in stage i = 1, 2, 3 in each renewal period. By
definition, E[X1] only depends on the access delay and the
arrival process, and is thus invariant to the timeouts. For a
Poisson request process of rate λf , E[X1] = 1 + λf D̄ as
analyzed before (including the arrival at the beginning of the
renewal period). Meanwhile, E[X3] only depends on when the
replacement policy decides to cache the missing content. For
FIFO, Random, and LRU, E[X3] = 0 (recall that X3 is the
number of misses before the cache requests the missing content
from the origin server). For q-LRU, E[X3] only depends on the
parameter q of the policy, and thus remains E[X3] = (1−q)/q.
For the two-staged policies (LRU-2, FIFO-2, and Random-2),
E[X3] only depends on when there is a hit in the virtual cache.
As the virtual cache is part of the replacement policy and not
subject to externally-imposed timeouts, our previous analysis
of E[X3] remains valid. Thus, the only value in (11) affected
by explicit timeouts is E[X2].

Under the TTL approximation, the explicit timeouts τI and
τH turn the (real) cache into a hybrid TTL cache with both a
reset timer τ̃I and a non-reset timer τ̃H . Under FIFO/Random
eviction (i.e., FIFO, Random, FIFO-2, Random-2), τ̃H =
min(T, τH) and τ̃I = τI . Under LRU eviction (i.e., LRU, q-
LRU, LRU-2), τ̃H = τH and τ̃I = min(T, τI). Let ti denote
the i-th interarrival time since the beginning of stage 2. As
X2 denotes the number of hits, i.e., the number of consecutive
arrivals before either timer expires, we have

Pr{X2 = n} = Pr

{
(t1, . . . , tn ≤ τ̃I) ∧ (

n∑
i=1

ti ≤ τ̃H)

∧ (tn+1 > τ̃I ∨
n+1∑
i=1

ti > τ̃H)

}
, (38)

where “∧” denotes AND and “∨” denotes OR. By the
Bayesian rule, (38) can be decomposed into

Pr{X2 = n} = Pr{A} · Pr{B|A} ·
(

Pr{tn+1 > τ̃I |A,B}

+ Pr{
n+1∑
i=1

ti > τ̃H , tn+1 ≤ τ̃I |A,B}
)
, (39)
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where A := t1, . . . , tn ≤ τ̃I , B :=
∑n
i=1 ti ≤ τ̃H . For a

Poisson request process of rate λf , Pr{A} = (1− e−λf τ̃I )n,
and Pr{tn+1 > τ̃I |A,B} = e−λf τ̃I (since tn+1 is independent
of t1, . . . , tn). Define Mf (τ) as the counting process of a
renewal process with truncated exponential interarrival times
with PDF λfe

−λf t/(1 − e−λf τ̃I ) for 0 ≤ t ≤ τ̃I and zero
elsewhere. Then Pr{B|A} = Pr{Mf (τ̃H) ≥ n}, and

Pr{
n+1∑
i=1

ti > τ̃H , tn+1 ≤ τ̃I |A,B} = Pr{tn+1 ≤ τ̃I |A,B}

· Pr{
n+1∑
i=1

ti > τ̃H |tn+1 ≤ τ̃I , A,B} (40)

= (1− e−λf τ̃I ) · Pr{Mf (τ̃H) < n+ 1|Mf (τ̃H) ≥ n}. (41)

Plugging these into (39) yields

Pr{X2 = n} =(1− e−λf τ̃I )ne−λf τ̃I Pr{Mf (τ̃H) ≥ n}
+ (1− e−λf τ̃I )n+1 Pr{Mf (τ̃H) = n}, (42)

which can then be used to compute E[X2].
Remark: While TTL cache with both a reset timer and a

non-reset timer has been considered in [12], its characteriza-
tion of the hit ratio is in terms of characteristics of the miss
process, e.g., expected number of requests per miss (Lemma 1)
and rates of generating misses (Lemma 4), which are unknown
to begin with. Additionally, [12] did not consider access delays
or multi-staged policies. As shown in (42), the existence of
both timers causes E[X2] and hence the hit ratio to have a
non-closed form even under Poisson arrivals, which is in sharp
contrast to the closed-form results in the presence of only
one timer. We leave to future work the derivation of a TTL
approximation under both timers that is easier to compute.

IV. PERFORMANCE UNDER CACHE POLLUTION ATTACK

We now apply the TTL approximation formulas obtained
in Section III to analyze the performance of these policies
under pollution attacks. Assuming that the cache cannot
distinguish requests sent by the attacker from those sent by
legitimate users (otherwise it can simply filter out requests
from the attacker), we measure the performance of a given
replacement policy under attack by its average hit ratio for the
legitimate users. Under the TTL approximation, the hit ratios
of different contents are only related through the characteristic
time of the cache. Therefore, attack flows affect the hit ratios
of legitimate flows by affecting the characteristic time.

Specifically, let hπ(λf , T ) denote the TTL approximation
of the hit ratio of a content with request rate λf at a cache
with policy π and characteristic time T . Given legitimate flows
of individual rates (λf )f∈Fl and a total rate Λl :=

∑
f∈Fl λf ,

we measure the performance of π by∑
f∈Fl

λfh
π(λf , T )

Λl
, (43)

where T implicitly depends on the attack rates (λf )f∈Fa in
addition to the legitimate flow rates (λf )f∈Fl . We will focus
on IRM in the rest of this section for explicit insights, although
our approach is extensible to more general cases.

A. Optimal Attack Strategy
To understand the fundamental performance limit under

pollution attacks, we first identify the optimal attack strategy
against each policy. In particular, while a higher attack rate
will always bring more damage, it also incurs a higher cost
to the attacker. Therefore, the optimal attack strategy should
make the best use of a given total attack rate.

1) Attack Rate Allocation: Given the total attack rate Λa,
let A ⊆ {(λf )f∈Fa : λf ≥ 0,

∑
f∈Fa λf = Λa, |Fa| = Ca}

be the set of candidate rate allocations among Ca attack flows.
The following holds (see proof in Appendix.B).

Theorem IV.1. If the characteristic time T is constant for all
(λf )f∈Fa ∈ A, and hπ(λf , T ) is an increasing function of T
and a concave function of λf , then the optimal attack strategy
in A that minimizes (43) is to equally allocate the total attack
rate, i.e., λf = Λa/Ca for all f ∈ Fa.

Some of the assumptions in Theorem IV.1 are guaranteed
to hold under certain conditions (see proof in Appendix.B).

Lemma IV.2. Under IRM, we have that:
1) hπ(λf , T ) for every policy π considered in Section III is

increasing in T ;
2) for π = FIFO and Random, hπ(λf , T ) is concave in λf ;
3) for π = LRU and q-LRU, hπ(λf , T ) is concave in λf if

D̄ is sufficiently small and eλfT ≥ (1− q)/q.

While the remaining assumptions are not proved to hold
exactly, we have verified numerically that they hold ap-
proximately for all the considered policies under IRM and
rate allocations of interest. Specifically, while analyzing the
concavity of the hit ratio wrt the request rate is intractable
for the two-staged policies, we have verified the concavity
numerically (Fig. 4 (c)). Moreover, while the characteristic
time generally depends on the attack rate allocation, it remains
largely constant for a wide range of skewness that corresponds
to potentially good attack strategies (Fig. 4 (d)). Similar ob-
servations have been obtained under other parameter settings.

2) Optimal #Attack Flows: Under a fixed total attack rate
and equal rate allocation, the attack strategy is fully determined
by the number of attack flows Ca. In theory, we can plug the
rates of legitimate and attack flows into the TTL approximation
formulas to write (43) as a function of Ca, which can then
be minimized to choose the optimal Ca. However, as the
characteristic time T is the solution to a high-order polynomial
or transcendental equation that cannot be solved in closed
form, (43) cannot be written as a closed-form function of Ca.
Instead, we use other means to obtain insights, starting with
the following observation (proved in Appendix.B).

Proposition IV.3. Under FIFO, Random, and LRU, Ca =∞
is optimal in minimizing (43) under IRM.

For the more advanced policies that perform selective inser-
tion upon misses, we resort to numerical analysis. Specifically,
as we have verified that the hit ratio is an increasing function
of the characteristic time, it suffices to examine what value
of Ca will minimize the characteristic time under each policy.
Results under a sample parameter setting is shown in Fig. 5,
but similar observations hold under other settings.
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Fig. 4. Verifying conditions of Theorem IV.1 (parameters of legitimate flows as in Section VI-A1, Λa = 1000, Ca = 1000).
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Fig. 5. Optimizing #attack flows (parameters in Section VI-A1, Λa = 1000).

These results imply the following attack strategies:
1) Mice-flow attack, which sends as many attack flows as

possible, each with a small rate, is most effective under
the policies covered by Proposition IV.3.

2) Elephant-flow attack, which sends fewer attack flows such
that each of them has a sufficiently high rate (relative to
the legitimate flows), is most effective under policies with
selective insertion and discriminate eviction rules (e.g., q-
LRU, LRU-2).

3) Medium-flow attack, with an intermediate number of at-
tack flows, is most effective under policies with selective
insertion but indiscriminate eviction rules (e.g., FIFO-2,
Random-2).

For example, under the setting in Fig. 5, the optimal Ca for
q-LRU and LRU-2 is around 1000, which makes the rates
of attack flows comparable to that of the largest legitimate
flow, hence suggesting an elephant-flow attack; the optimal
Ca for FIFO/Random-2 is around 6000, leading to much
smaller attack flows (smaller than the top 6 legitimate flows),
suggesting a medium-flow attack; under FIFO, Random, and
LRU, the attack becomes more effective as Ca increases, as
predicted by Proposition IV.3, suggesting a mice-flow attack.

Remark: Although we use the average hit ratio as the
performance metric, the optimal attack strategy will remain
the same even if the adversary only targets at a specific flow
or a subset of flows, as the hit ratio of every flow is increasing
in the characteristic time.

B. Impact on Cache Performance

Given the optimal attack strategies, we can now plug them
into the TTL approximation formulas of various policies to
analyze the impact of the attacks on the hit ratios for legitimate
users. Below, we only show the predicted hit ratio according
to (43); validation based on actual hit ratios will be presented
later in Section VI.

As the optimal attack will allocate equal rate to all the
attack flows, it suffices to parameterize an attack by the total
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Fig. 6. Predicted performance under pollution attack (parameters of legitimate
flows as in Section VI-A1, under which λf ∈ [0.0002, 1] for f ∈ Fl).

attack rate Λa and the number of attack flows Ca. We start
by confirming our previous observations regarding the optimal
design of Ca under a fixed total attack rate λaCa in Fig. 6 (a).
As in Fig. 5, we see that the policies divide into three groups:
(i) FIFO, Random, and LRU are most vulnerable to mice-
flow attacks corresponding to large Ca, (ii) q-LRU and LRU-2
are most vulnerable to elephant-flow attacks corresponding to
relatively small Ca (≈ 1000), and (iii) FIFO-2 and Random-2
are most vulnerable to medium-flow attacks corresponding to
an intermediate Ca (≈ 6000).

While the behaviors of FIFO, Random, and LRU have
been explained by Proposition IV.3, the behaviors of the other
policies also have intuitive explanations. Specifically, we know
that q-LRU and LRU-2 closely approximate LFU [7], which
only serves the largest C flows. Hence, these policies will
effectively preserve the hit ratio for legitimate users if the
largest C flows do not include attack flows, but severely
degrade this value as more and more of the largest C flows
become attack flows. To illustrate this point, we fix the rate
per attack flow at λa and vary the number of attack flows
Ca, as shown in Fig. 6 (b–d). We have also added the curve
for LFU. The results confirm that LFU and its approximations
(e.g., LRU-2) are resilient to mice-flow attacks but vulnerable
to elephant-flow attacks; in contrast, simple indiscriminate
policies (e.g., FIFO, Random) are resilient to elephant-flow
attacks by treating all the flows equally, but vulnerable to
mice-flow attacks as they tend to generate more attack flows.
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Under medium-flow attacks, LFU and its approximations still
guarantee service for the largest few legitimate flows, thus
achieving an intermediate performance. Moreover, we see that
which policy performs the best will vary based on the attack
strategy and the number of attack flows.

V. ATTACK-AWARE POLICY SELECTION

We further exploit the use of attack-resilient replacement
policies as a second line of defense, in scenarios where efforts
to prevent/detect attacks have failed and the cache cannot
distinguish legitimate requests from malicious requests.

The results from Section IV-B suggest that no single re-
placement policy can maximize the hit ratio for legitimate
users in all the attack scenarios. Therefore, the policy needs
to be adapted based on the current level of attack, where the
TTL approximations can provide valuable information.

Specifically, while the exact rates of attack flows (λf )f∈Fa
are hard to estimate (because the cache does not know which
flows are attack flows), it is often possible to estimate coarse
parameters of the attack, such as the number of attack flows
Ca and their total rate Λa. For example, by comparing
the current number and total rate of flows to the expected
values from the history, we can use the surplus (if any) to
estimate these parameters for a suspected pollution attack.
From Section IV-A, we know that the optimal attack strategy
under these estimated parameters is to send Ca flows of equal
rate λa := Λa/Ca. Therefore, we can obtain a conservative
estimate of the legitimate users’ average hit ratio by identifying
Ca of the current flows with rates around λa and a total
rate around Λa as “attack flows” and considering the rest as
legitimate flows.

Let F denote the current set of flows and Fa the estimated
subset of attack flows. Let Π denote the set of candidate
policies. We can use the TTL approximations to select the
best policy in Π as follows:

1) for each candidate policy π ∈ Π, solve the characteristic
equation

∑
f∈F h

π(λf , T ) = C for the characteristic
time T under policy π;

2) based on the calculated characteristic times, estimate the
average hit ratio h̄π of the legitimate flows under each
π ∈ Π by (43), where Fl := F \ Fa;

3) select the policy π∗ with the maximum h̄π .
Remark 1: The above method of estimating attack flows is

not meant to accurately detect the attack flows; instead, we
only use it to compute a conservative estimate of the hit ratio
for legitimate flows, while the actual hit ratio can only be
higher if the attack flows are different from our estimate (as
long as there are no more than Ca attack flows of a total rate
no more than Λa). Moreover, when the cache cannot maintain
the exact flow rates (λf )f∈F (e.g., due to memory limitation),
we can use approximations, e.g., computed by sketching [35].

Remark 2: As TTL approximations only describe the cache
performance in the steady state, the above policy selection
scheme is only designed to maximize the (worst-case) average
hit ratio of the legitimate flows in the steady state. We leave
the design of new policies or policy selection schemes that
accounts for transient behaviors to future work.

VI. SIMULATIONS

We evaluate the proposed solutions via simulations in the
scenario where the cache represents a flow table at an SDN
switch. Functioning as a cache of flow rules from the con-
troller, the flow table is particularly vulnerable to pollution
attacks due to its small size as shown in [9], [22], [26], [23],
[24], [25]. In this context, a “request” is an incoming packet,
a “content” is a flow rule, and the access delay is the time for
the switch to query the controller and install a new rule upon
a table miss. “Hit ratios” in the sequel always refer to the hit
ratios of legitimate flows.

A. Simulation Setting

We set the cache size C = 1000 according to the flow
table size of commodity switches [36], and the average access
delay D̄ = 20 ms according to the performance of such
switches [37]. We set q = 0.15 for q-LRU. We generate attack
flows as independent Poisson processes of rates to be specified
later. We generate legitimate flows in two ways:

1) Synthetic simulation: To verify our theoretical predic-
tions, we generate |Fl| = 5000 Poisson processes with total
rate Λl = 10 packets/ms and a Zipf(α) popularity distribution
with skewness α = 1. Here, |Fl| is set according to the
maximum number of active flows (90% of the time) at a
data center switch [38], Λl according to the average rate of
the corresponding traces [39], and α according to the typical
skewness of these traces.

2) Trace-driven simulation: To validate our findings made
under the IRM assumption, we also use real traces as legiti-
mate flows. To this end, we use the UNI2 dataset from [39],
which contains 9 trace files, each containing 29, 312–47, 807
flows of a total rate between 9.84 and 11.31 packets/ms.
From each file, we extract 10 traces of 10, 000 packets from
disjoint time periods with sufficiently many active flows. It is
known [38] that these traces deviate from Poisson processes.

B. Results

1) Accuracy of TTL Approximation: To verify the accuracy
of our TTL approximation formulas, we compare the simulated
and the predicted hit ratios for each flow generated as in
Section VI-A1 without any attack. The results in Fig. 7 (a)
show that the prediction by our formulas is highly accurate
under IRM, validating the correctness of our analysis. We
further vary the average access delay and evaluate the average
hit ratio over all the flows, as in Fig. 7 (b). Besides verifying
the accuracy of our formulas under a wide range of access
delays, this result also demonstrates the value of considering
access delays, as ignoring such delays (i.e., assuming D̄ = 0)
can cause significant overestimation of the hit ratios. Mean-
while, the result also indicates that access delays do not have
much impact under LRU and its variations (q-LRU, LRU-2),
intuitively because these policies allow popular contents to
renew its TTL and stay in the cache for a relatively long period
of time, mitigating the misses incurred during content access.
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Fig. 7. Accuracy of TTL approximation (◦: simulated; —: predicted).

2) Impact of Pollution Attack: Next, we evaluate the av-
erage hit ratio for legitimate users under pollution attacks.
For Poisson traffic (Fig. 8), the TTL approximations accu-
rately predict the performance for legitimate users under a
wide range of attacks, thus validating our observations in
Section IV-B. For the traces, as the legitimate flows and their
rates vary from trace to trace, we plot the distribution of
average hit ratios over all the traces under three representative
attack strategies (Fig. 9 (a–c)). We see that while the prediction
is no longer exact, it captures important trends: (i) simple
indiscriminate policies (e.g., FIFO, Random) are resilient to
elephant-flow attacks but vulnerable to other attacks; (ii)
highly discriminative policies (e.g., LRU-2) are resilient to
mice/medium-flow attacks but vulnerable to elephant-flow
attacks; (iii) two-staged policies with indiscriminate eviction
rules (e.g., FIFO-2, Random-2) are resilient to both mice-
flow and elephant-flow attacks but vulnerable to medium-flow
attacks with suitable rates. These results validate that: (1) no
single policy can optimize the performance for legitimate users
in all the attack scenarios, and (2) the TTL approximations can
guide us to the best policy in a given attack scenario.

3) Performance of Policy Selection: Since Fig. 9 (a–c)
already validate that the TTL approximations will lead us
to the best policy under static attacks, we now focus on
time-varying attacks. To this end, we simulate a hybrid attack,
where for each trace, attack traffic is sent according to the
mice-flow attack in Fig. 9 (a) for the first 1/3 of the trace,
the medium-flow attack in Fig. 9 (b) for the second 1/3 of
the trace, and the elephant-flow attack in Fig. 9 (c) for the
last 1/3 of the trace. The intuition is to take advantage of
the fact that none of the policies is resilient against all the
three attack strategies. Fig. 9 (d) shows the distribution of the
average hit ratios over all the traces for the adaptive policy
selection scheme proposed in Section V (‘Adaptive’) as well
as the individual policies, assuming that the attack parameters
(Λa, Ca) are accurately estimated. We see that (i) the adaptive
policy selection scheme achieves a better performance than
any single policy under the hybrid attack, and (ii) two-
staged policies are more robust than single-staged policies.
Furthermore, we investigate the behavior of adaptive policy
selection by examining the frequency (in terms of #times)
of selecting various policies in each stage of the attack in
Table I. The results confirm that the proposed scheme is able
to combine the strengths of different policies by choosing the
most resilient policy in each attack scenario most of the time.

The results in Fig. 9 (d) are based on the assumption that the
attack parameters (Λa, Ca) are accurately and instantaneously
estimated. While how to estimate these parameters is out of the

TABLE I
POLICY SELECTION FREQUENCY UNDER HYBRID ATTACK

LRU Q-LRU LRU-2 FIFO-2 FIFO
mice – – 90 – –
medium 1 5 77 – 7
elephant – – – 86 4

scope of this work, we have conducted additional simulations
to understand the sensitivity of the proposed policy selection
scheme to estimation errors/delays; see Appendix.C.

VII. PROTOTYPE IMPLEMENTATION AND EXPERIMENTS

We further implement selected policies in Open vSwitch,
which is an open-source software-based SDN switch. Existing
Open vSwitch implementation uses a fixed rule replacement
policy that functions like LRU in the default setting [40].
Periodically, the eviction priority for all the non-permanent
flow rules (those with idle or hard timeouts) is calculated,
where the rule that expires the soonest has the highest priority.
If a new rule needs to be inserted when the flow table is full,
the rule with the highest eviction priority will be removed to
make space for the new rule. As typically only the idle timeout
is used, the above implementation leads to an approximation of
LRU. We have also verified that Open vSwitch by default only
uses one table (table 0), justifying treating the flow table as a
single cache. As our previous result shows that a single policy
will not be resilient to all attack scenarios, we implement
additional rule replacement policies and test their resilience
under various attack scenarios.

A. Implementation in Open vSwitch

1) Additional Rule Replacement Policies: In addition to
the default LRU-like policy, we implement two new policies:
FIFO and q-LRU. FIFO is implemented by changing the
computation of eviction priorities (the earlier the creation
time of a rule, the higher the priority for eviction), and q-
LRU is implemented by inserting a coin flip in the function
handling the insertion of new rules such that non-permanent
rules are only inserted with probability q, which is a design
parameter (set to 0.15 according to Section VI-A). Both
are low-complexity stateless policies that impose a minimal
overhead similar to LRU.

This implementation does not include Random and the
two-staged policies. Random is skipped as its performance
has been shown to be dominated by FIFO. While the two-
staged policies have shown good resilience under some attack
scenarios in the simulations, they have a much higher overhead
(including memory consumption) due to the need to maintain
the virtual cache. Moreover, we find that implementing these
policies in Open vSwitch will require disruptive changes to
the code (e.g., to extract a unique rule ID from both the
uncompressed rule sent by the controller and the compressed
version stored in the flow table). Therefore, we leave the
implementation of such more complex policies to future work.

2) Mechanism for Runtime Policy Adaptation: Further-
more, to enable attack-aware policy adaptation [1], we im-
plement a mechanism to track and adapt the replacement
policy at runtime. This includes a new flow table attribute
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Fig. 8. Pollution attack on synthetic traffic (◦: simulated; —: predicted).
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Fig. 10. Illustration of Network Created In Mininet

called eviction_algorithm to indicate which policy is
selected, and a new command to configure this attribute. The
new command utilizes the utility ovs-ofctl to generate
a table_mod message that specifies the newly selected
policy. This command is applicable to any switch supporting
OpenFlow 1.4/1.5, which supports table_mod.

The modified code based on Open vSwitch v2.14.0 is
available at [41]. We refer to [42] for more details.

B. Experimentation in Mininet

We test our implementation in Mininet [43], which is an
SDN emulator that can emulate a virtual SDN based on the
Linux kernel and the real network stack on a single machine.
Our experiments are conducted in a VM with Ubuntu 16.04,
8 cores, 16 GB RAM, and 10GB hard disk.

1) Experiment Setup: We create a 18-host network with
one attack host, one active legitimate host, and 16 passive
legitimate hosts only receiving packets, all connected through
an Open vSwtich under the control of an OpenFlow-Test Con-
troller, as illustrated in Fig. 10. Using multiple receiving hosts
allows us to create more flows, each defined by a combination
of source and destination IP addresses, MAC addresses, and
port numbers. The controller sets an idle timeout of 60s for

each non-permanent rule (no hard timeout). We have verified
that this timeout has negligible impact on our experiments.

Both the attack host and the active legitimate host gen-
erate UDP packets according to specified patterns. In each
experiment, the attack host generates Ca flows according
to independent Poisson processes of equal rate λa, where
parameters (Ca, λa) are determined by the attack strategy.
The active legitimate host generates flows according to one of
the extracted traces in Section VI-A2. In both cases, different
flows are generated by varying the destination as well as the
port numbers. Each packet has a unique sequence number in
the payload that allows us to compute the (one-way) delay
between transmission and reception. We use the usleep()
function to control the timing between packets according to
the interarrival times in the Poisson processes or traces. The
code and data for our experiments are available at [44].

2) Implementation Challenge: Our simulations use a total
traffic rate of roughly 1000 packets/ms. However, generating
packets at this rate in the experiment faces an implementation
challenge: each call to usleep() incurs an overhead of 70–
80 µs in our system, which implies a maximum rate of roughly
10 packets/ms. To accommodate this overhead, we send both
the attack traffic and the legitimate traffic at 100x slowdown,
i.e., changing the time unit from ‘1 ms’ to ‘100 ms’. Due
to the slowdown, the experiments are only performed on one
trace from each of the 9 trace files from [39].

Ideally, we should increase the access delay D̄ (i.e., time
to obtain and install a new rule) proportionally. However,
due to the limited buffer size at the interface between the
switch and the controller, we can only impose up to 500 ms
of (round-trip) delay without causing buffer overflow, which
amounts to 5 ms without the slowdown. Such a rule installation
delay is smaller than what can be achieved on commodity
switches [37]. As we have observed that the performance gap
between different policies increases with the access delay [42],
we conjecture that suitably adapting the replacement policy
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can achieve an even greater performance improvement over the
default policy in commodity switches than what is achieved
in our experiments. Validating this conjecture will require
modification to the internal logic of commodity switches,
which is beyond the scope of this work.

3) Hit/Miss Inference: Following the approach in [9], we
use the measured packet delays to infer whether a packet has
incurred a hit or a miss at the flow table. To this end, we profile
the delay distributions under sure hits and sure misses, before
adding any delay to the controller, as illustrated in Fig. 11 (a).
There is a clear gap between the largest delay for hits and the
smallest delay for misses, which allows us to distinguish hits
from misses. With the 500-ms additional miss delay, this gap
will be even wider, allowing easy inference of hits/misses.

4) Experiment Results: Fig. 11 (b–d) shows the experiment
results, where Fig. 11 (b) is under mice-flow attack, Fig. 11 (c)
under elephant-flow attack, and Fig. 11 (d) under a hybrid
attack which performs mice-flow attack for the first half of
each trace and elephant-flow attack for the second half. Here
we only consider mice-flow and elephant-flow attacks because
they are the optimal strategies against the implemented
policies: FIFO and LRU are most vulnerable to mice-flow
attacks, and q-LRU is most vulnerable to elephant-flow attacks.

The experiment results confirm the value of using a replace-
ment policy other than the default policy of LRU under attacks.
Under the mice-flow attack, q-LRU substantially outperforms
LRU; under the elephant-flow attack, FIFO substantially out-
performs LRU. Moreover, under the hybrid attack, adapting
the policy from q-LRU to FIFO according to the prediction
by TTL approximation outperforms all the fixed policies.

VIII. CONCLUSION

Inspired by empirical studies that showed poor performance
of normally good replacement policies under pollution attacks,
we performed a systematic study of the attack resilience
of a set of representative policies using the tool of TTL
approximation. After incorporating access delays into these
approximations, we used them to design the optimal attack
strategy against each policy and develop an attack-aware
policy selection scheme. Our case study with an SDN flow
table as the cache validated our solutions, particularly that the
flow table can be made more resilient to pollution attacks by
suitably adapting the rule replacement policy based on the
perceived level of attack. Our results also identified certain
policies, especially FIFO-2, as an attack-oblivious solution
with relatively good resilience. Our prototype implementation
and experiments validated that our solution can improve the
attack resilience of SDN switches.
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APPENDIX.A: ADDITIONAL RESULTS ON TTL
APPROXIMATION

A. Random-2 under Exponential Access Delays

Our previous analysis in Section 3-E is based an indepen-
dence assumption between the virtual and the real caches. In
the case that access delays are i.i.d. exponentially distributed
(with mean D̄), it is possible to compute the exact hit
probability for Random-2 under TTL approximation without
the independence assumption. Specifically, let (i, j) ∈ {0, 1}2
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Fig. 12. Continuous-time Markov chain for Random-2.

denote the occupancy state of a content f of interest in the
two caches. Moreover, let (i, 0′) (i = 1, 2) denote the state
where a request to retrieve the content from the origin server
is pending. Under IRM, the evolution of the occupancy state
can be described by a continuous-time Markov chain with
the transition diagram depicted in Fig. 12, where µ1 :=
1/T̄1, µ2 := 1/T̄2, λD := 1/D̄. Let π denote the steady-
state distribution of this Markov chain. Then the probability
for content f to occupy the real cache, which also equals its
hit probability by PASTA, is given by

hRandom-2
f = π0,1 + π1,1. (44)

This Markov chain extends the 4-state Markov chain in [7,
Fig. 4] by incorporating the impact of access delay.

B. Extension to Multi-staged Policies

Some of our analysis for two-staged policies can be ex-
tended to k-staged policies for k > 2. We will discuss such ex-
tensions under the assumption of equal-sized caches and IRM.

The extension only affects the calculation of E[X3], where
X3 is the number of consecutive misses in cache k−1 (the last
virtual cache) upon a miss in cache k (including the request
causing that miss). For LRU-k, let St denote the largest cache
index such that cache St stores content f (or its ID) right
before the arrival of request t (t = 0 for the first arrival in
state 3); St := 0 if no cache stores the content (or its ID). Then
{St}t≥0 is a discrete time Markov chain with the transition
diagram depicted in [6, Fig. 2]. As the characteristic times
satisfy Tk ≥ Tk−1 ≥ . . . ≥ T1 [6], the first request in stage 3
(that results in a miss in cache k) must result in misses in all
the caches, i.e., S0 = 0. Thus, X3 equals the number of steps
for St to reach state k− 1 when starting from state 0. Define

xi:=E [inf{t≥0 : St = k−1|S0 = i}] , i= 0, . . . , k−1. (45)

Then E[X3] = x0. The Markovian property of {St}t≥0 implies

xi =

{
0 if i = k − 1,
1 +

∑
j pijxj , if i 6= k − 1,

(46)

where pij := Pr{St = j|St−1 = i}. Plugging the transition
probabilities given in [6, Fig. 2] into (46) gives the following
system of equations

xi = 1 + e−λfTi+1x0 + (1− e−λfTi+1)xi+1 (47)

for i = 0, . . . , k− 2. These equations together with xk−1 = 0
allow us to solve for x0. Then by (11),

hLRU-k
f =

eλfTk − 1

λf D̄ + eλfTk + x0
, (48)

where we have plugged in E[X1] = 1 + λf D̄ and E[X2] =
eλfTk − 1.

For FIFO-k, however, such an extension is more difficult.
Even under the assumption of independence across caches,
computing E[X3] will require us to analyze the expected
number of consecutive misses before a hit in a cache managed
by FIFO-(k − 1) without access delay. Due to the constant
non-reset timers, existing Markov chain models [7], [6] do
not apply. We thus leave this analysis to future work.
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Fig. 13. Continuous-time Markov chain for Random-3.
For Random-k, we can extend the previous analysis under

the assumption of exponential access delays. For a gen-
eral k ≥ 2, the cache dynamics can be modeled by a
continuous-time Markov chain with 2k + 2k−1 states, where
state (i1, . . . , ik) ∈ {0, 1}k means that there is no pending
request to the origin server and the current occupancy of the
content of interest in cache j is indicated by ij (j = 1, . . . , k),
and state (i1, . . . , ik−1, 0

′) means that there is a pending
request to retrieve the content from the origin server (to
insert it into cache k) while the occupancy in virtual cache
j (j = 1, . . . , k − 1) is indicated by ij . Fig. 12 gives an
example of this Markov chain for k = 2, and Fig. 13 gives
another example for k = 3. After solving for the steady-state
distribution π of this Markov chain, the hit probability for
content f is given by

hRandom-k
f =

∑
(i1,...,ik−1)∈{0,1}k−1

πi1,...,ik−1,1. (49)

APPENDIX.B: PROOFS OF THEOREMS

Proof of Theorem 4.1. Since the hit ratio of each legitimate
content is increasing in T , the most effective attack strategy
should minimize T . From the characteristic equation:∑

f∈Fl

hπ(λf , T ) +
∑
f∈Fa

hπ(λf , T ) = C, (50)
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we know that minimizing T , which will minimize the first term
on the left-hand side of (50), is equivalent to maximizing the
second term. This leads to a constrained optimization problem:

max
∑
f∈Fa

hπ(λf , T ) (51a)

s.t. (λf )f∈Fa ∈ A. (51b)

Since T can be treated as a constant and hπ(λf , T ) is concave
in λf , we have

1

Ca

∑
f∈Fa

hπ(λf , T ) ≤ hπ(

∑
f∈Fa λf

Ca
, T ) = hπ(

Λa
Ca

, T ), (52)

achieved when λf = Λa/Ca for all f ∈ Fa.

Proof of Lemma 4.2. Based on the TTL approximation for-
mulas under IRM ((1), (5), (6), (15), (20), (26), (33) ), it is easy
to see that all the hit ratios are increasing in the characteristic
time.

For FIFO, taking the second derivative of the hit ratio (1)
wrt λf yields

∂2

∂λ2
f

hFIFO
f =

−2T (D̄ + T )(
1 + λf (D̄ + T )

)3 ≤ 0, (53)

which proves that hFIFO
f is concave in λf . The same holds for

Random. For q-LRU, taking the second derivative of (15) wrt
λf yields

∂2

∂λ2
f

hq-LRU
f =

T 2e2λfT g(λf ;T, D̄, q)

(D̄λf + eλfT + 1−q
q )3

, (54)

where

g(λf ;T, D̄, q) := (
1

q
+ D̄λf )

(
1 +

1− q
qeλfT

+
D̄λf
eλfT

)
− 2

(
1 +

D̄

TeλfT

)(
1

q
+ D̄

(
λf −

1

T
+

1

TeλfT
))

.

When eλfT ≥ (1− q)/q,

lim
D̄→0

g(λf ;T, D̄, q) =
1

q
(

1− q
qeλfT

− 1) ≤ 0. (55)

Hence, hq-LRU

f is concave in λf for a sufficiently small D̄
(precisely, small enough such that g(λf ;T, D̄, q) ≤ 0). The
same applies to LRU as LRU is simply q-LRU with q = 1.

Proof of Proposition 4.3. We prove the statement by arguing
that Ca =∞ minimizes the characteristic time T . Since FIFO
and Random have the same hit ratio under IRM [7], it suffices
to show the above for FIFO and LRU. To this end, we note
that T represents the TTL of a newly inserted content f , which
is the time for the cache to receive requests for C distinct
contents other than f (assumed to be a constant independent
of f under the TTL approximations) [33], [7]. Clearly, under
a fixed total attack rate, associating every attack request with
a distinct content minimizes the TTL and hence (43).
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Fig. 14. Adaptive policy selection under hybrid attack with estimation error
and/or delay.

APPENDIX.C: SENSITIVITY ANALYSIS

The results in Fig. 9 (d) are based on the assumption that
the attack parameters (Λa, Ca) are accurately and instanta-
neously estimated. While how to estimate these parameters
is out of the scope of this work, we want to understand
the sensitivity of the proposed policy selection scheme to
errors in estimating these parameters. There are three types
of errors that can affect the performance of policy selection:
(1) error in estimating the total attack rate Λa, (2) error in
estimating the number of attack flows Ca, and (3) error due
to delays in updating these estimates as the ground truth
parameters change. To simulate the first type of error, we
generate the estimated total attack rate Λ̂a uniformly from
the interval [(1− eΛ)Λa, (1 + eΛ)Λa], i.e., with a relative
error of up to eΛ. The second type of error is simulated
similarly by generating the estimated number of attack flows
Ĉa uniformly from the interval [(1− eC)Ca, (1 + eC)Ca],
with a maximum relative error of eC . To simulate the third
type of error, we impose a delay in detecting the change in
attack parameters (and re-estimating these parameters) that is
uniformly distributed in

[
0, eDM̄

]
, where M̄ is the median

duration of each stage.
We evaluate the impact of each type of error by repeating the

experiments in Fig. 9 (d) when injecting: only the first type of
error (Fig. 14 (a)), only the second type of error (Fig. 14 (b)),
only the third type of error (Fig. 14 (c)), and all types of errors
(Fig. 14 (d)), under an initial selection of LRU-2. The results
show that the proposed policy selection scheme is sensitive
to the error in estimating the number of attack flows Ca and
insensitive to the error in estimating the total attack rate Λa and
the estimation delay. Nevertheless, we see that with moderate
accuracy in estimating these coarse attack parameters (≤ 10%
error), adaptively selecting the replacement policy based on the
TTL approximation still outperforms using a fixed policy. We
have verified that the performance of adaptive policy selection
is not sensitive to the choice of the initial policy.

Besides the results shown in Fig. 14, we have conducted
additional sensitivity analysis under different levels of error
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TABLE II
POLICY SELECTION FREQUENCY UNDER HYBRID ATTACK, WHERE

eC , eΛ, eD = 0.1

LRU Q-LRU LRU-2 FIFO-2 FIFO
mice – – 90 – –
medium 1 6 76 – 7
elephant – – 19 45 26

TABLE III
POLICY SELECTION FREQUENCY UNDER HYBRID ATTACK, WHERE

eC , eΛ, eD = 0.4

LRU Q-LRU LRU-2 FIFO-2 FIFO
mice – – 90 – –
medium – 17 64 – 9
elephant – 14 22 8 46

(including delay) in estimating the required attack parameters.
The results, presented in Fig. 15, show that while the proposed
policy adaptation scheme still outperforms the best fixed policy
when the error is sufficiently small (≤ 20%), it gradually
degrades as the error increases, and is eventually surpassed
by the best fixed policy (FIFO-2 in this case) when the
error is sufficiently large (≥ 30%). To better understand this
phenomenon, we have examined the impact of the estimation
error on the frequency of selecting each of the candidate
policies during each stage of attack, shown in Tables II and III.
Compared with the policy selections under perfect estimation
(Table I), these results indicate that as the accuracy in the
estimated attack parameters decreases, the adaptation scheme
has a higher chance to select a suboptimal policy, and the
phenomenon is more prominent during medium/elephant-flow
attack. For example, consider the case with up to 40% error
(eC , eΛ, eD = 0.4). In this case, the adaptation scheme is
still able to select the correct policy under mice-flow attack,
but makes some mistakes under medium-flow attack and
even more mistakes under elephant-flow attack. Intuitively,
this is because the values of attack parameters (Λa, Ca)
under mice-flow attack are very different from those under
medium/elephant-flow attack, making it easier to correctly
classify mice-flow attack. Meanwhile, the parameter values for
medium-flow and elephant-flow attacks are relatively close to
each other, making it possible to misclassify a medium-flow
attack as an elephant-flow attack under which a FIFO-like
policy is preferred (see Fig. 9(c)), or misclassify an elephant-
flow attack as a medium-flow attack under which an LRU-like
policy is preferred (see Fig. 9(b)).
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Fig. 15. Adaptive policy selection under hybrid attack with different levels
of estimation error and delay, where eC , eΛ, eD = 0.1, 0.2, 0.3, 0.4.
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