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Abstract—In recent years consumers of power have also started
to generate power via renewable sources such as wind and
solar. In smart grid distribution systems controls are applied
to regulate the consumption and distribution of energy to save
energy and costs. These controls rely on monitoring of the
power distribution system. To monitor these system sufficiently to
optimize power flow can be costly. The advent of fifth generation
(5G) networks presents an opportunity to improve monitoring
capabilities at low cost. In the 5th generation of mobile cellular
networks, end-to-end network slicing is the critical enabler, such
that an infrastructure provider creates various network slices
for different Mobile Virtual Network Operators (MVNOs) to
accommodate various services. This work assumes each MVNO
is a power company while nodes are sensors and actuators in the
power grid. Proper resource allocation for numerous coexisting
network slices is vital. We address this issue by proposing a
novel scheme in Radio Access Network (RAN) network slicing to
maximize spectral efficiency, subject to guaranteeing each sensor
and actuator in the power grid receive a minimum requirement of
slices. We characterize the fundamental hardness of our problem
and develop a greedy heuristic. Next, via simulations on the IEEE
13-, 34- and 37-node test feeders, we show that the proposed
algorithm achieves superior performance in terms of served
power after balancing the unbalanced distributed power system.

Index Terms—5G, network slicing, SCADA system, distribu-
tion power system, unbalanced system

I. BACKGROUND & RELATED WORK

A smart power grid is a modernized power grid that
uses information and communication technologies to collect
information and dispatch control commands to the power grid.
This information is used to remotely regulate the production
and distribution of electricity or adjust power consumption to
save energy and reduce losses. In a distribution power system
where consumers also generate energy through distributed
generators, the power flow must be balanced continually and
quickly. To do that, there must be robust monitoring which
can be very costly. We propose using 5G technology to enable
this monitoring and control with sufficient performance and
connectivity in a cost-effective manner.

The United Nation estimates that up to 85 percent of
electricity must be renewable by 2050 to combat the effects of
climate change [1]. Consequently, house owners are inspired to
install solar panels, wind turbines, or other energy-generating
sources due to their low carbon emissions [1]. Moving toward
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solar and wind energy leads to an increased risk of network
disturbances, such as overvoltage, harmonics distortion,
reverse power flows, or power losses [2], which requires
faster responses to adjust the balance between generation
and consumption. Therefore, connectivity of power grid
components to control networks such as Supervisory Control
and Data Acquisition (SCADA) system plays a critical role.

Authors in [3] claim that 95% of blackouts occur in the
last 5-kilometers of the power grid, i.e. the distribution and
consumption part, which is the major bottleneck for smart grid
development. This is because of low coverage due to the distri-
bution pattern and the tremendous number of users, especially
in dense urban areas [4]. Operating optical fiber in these areas
is costly and has deployment difficulties; however, the new
emerging 5G technology effectively addresses this problem.

Recently, due to the growing usage of distributed energy
resources such as solar PhotoVoltaic (PV), distribution networks
need to be actively supervised to guarantee their reliability and
optimized operation. The Optimal Power Flow is one of the
methods to do so, which provides solutions for switching opti-
mization, transformer tap optimization, Conservation Voltage
Reduction (CVR), or Volt/VAR Optimization (VVO) [5].

As an appropriate means of ”going to meet the objectives
of transitioning to this next-gen grid” [6], 5G offers reduced
maintenance and lower CapEx investment in grid communi-
cation infrastructure, which is facilitated by relaxing the need
for extensive fiber optic cabling. In general, the applications
of smart grids are categorized as intelligent distributed feeder
automation, millisecond-level precise load control, information
acquirement of low voltage distribution systems, and distributed
power supplies [3], [4]. Table I shows network requirement
of these applications [4]. As 5G network slicing satisfies all
these demands, this work focuses on the appropriate allocation
of network bandwidth to different slices, such that appropriate
connectivity of the power grid’s component is provided and
the requirement of different slices are ensured.

The primary innovation in 5G is virtualization, such that
instead of dedicated physical servers, network functions
represent network elements. Network function virtualization
enables network slicing, which allows operators to divide the
network into virtual slices such that all run on shared physical
infrastructure. Each slice is a virtual, end-to-end individual, and
logical network of its own, while all components that represent
communication, such as data speed, privacy, or latency can be
customized in each slice by a customer use case. Each user



Figure 1: distribution system where homes/lines are nodes (V )/transmission lines (E)

can simultaneously support one or more slices, depending on
the functionality it implements [7].

Each network slice contains RAN slice, core slice, and
transport slice which is the connectivity between RAN and
core slices. In this paper, we solely focus on slicing the RAN
in 5G-NR. The main idea of RAN slicing resource allocation
is optimizing the performance of the entire network system
while ensuring the various users’ requirements. 5G-NR has
been designed to support various verticals having a wide range
of requirements. Also, 5G-NR defines different numerologies
(or subcarrier spacing) [8]. However, due to its complexity,
most of the works only use the same numerology throughout
the network slice life-time [8]–[11], which is the same method
in this paper. Research on multiple numerologies and core
network slicing is left to future works.

Resource allocation of network slicing plays a crucial role in
resource utilization and networking performance. It is realized
as centralized versus hierarchical schemes. In the former
approach, the infrastructure provider allocates the resource to
users, which creates a huge computational overhead. However,
in hierarchical schemes different entities such as Mobile
Virtual Network Operators (MVNO) are involved and the
resources owned by an infrastructure provider are shared by
multiple MVNOs [12]. In this work, we focus on bandwidth
allocation from the perspective of a layer between physical
and slice, i.e., MVNO, and assume each MVNO represents a
power company, while users are sensors and actuators in the
power grid.

Summary of Contributions

Table I: The communication network requirement for (i) intelligent distributed feeder
automation, (ii) millisecond-level precise load control, (iii) information acquirement of

low voltage distribution systems, and (iv) distributed power supplies.

Latency req.
(milliseconds)

Reliability req.
(99.999%)

Users’ density
req. (millions to
tens of millions)

(i) High High High
(ii) High High High
(iii) Low Medium Low
(iv) High High Medium

Our contributions in this paper include:
1) We consider a SCADA communication network for the

distribution power grid and assume that all communication
links are network slices. We posed as an optimization of
maximizing the total power demand served by assigning
appropriate slices as a communication medium between the
CC and sensors/actuators in the distribution power grid.

2) As the total served power is not an explicit function of
the decision variables, we propose a proxy objective function
capturing the observability/controllability of nodes in the grid,
weighted by their importance in the system topology and the
their service. The solution is a set of assigned slices to nodes
in the power grid. The number and type of slices are limited
by the network bandwidth.

3) We formulate the underlying optimization as a non-
linear problem, which is proved to be NP-hard. The problem
maximizes spectral efficiency, subject to providing nodes in the
power grid a guaranteed delay and connectivity requirements.

4) We apply greedy heuristic and by performing extensive
evaluations on the IEEE 13-, 34- and 37-node test feeders, we
show that the proposed heuristic outperforms baselines.

A. Related Work

Resource allocation and network slicing in RAN and their
challenges are popular discussed topics in the literature.
Nowadays, with the emergence of new 5G various services,
the concept of network slicing is gaining notable importance.
Authors in [13], [14] provide a survey on resource allocation
challenges and the enabling technologies in network slicing.
Literature [15]–[22] focus on sharing radio resources for
satisfying different coexisted 5G services simultaneously.
5G accommodates four major usage scenarios namely,
Enhanced Mobile Broadband (eMBB), Ultra-reliable
Low-Latency Communications (URLLC), Massive Machine-
Type Communications (mMTC) and vehicle-to-X (v2x)
communications, in detail [23], [24]. Here is a brief summary
of them: 1) eMBB, where these applications are very video-
centric, consume much bandwidth, and generate the most traffic
on the mobile network. Here, the peak data rate reaches as
much as 20 gigabits per second in downlink and 10 gigabits per
second in uplink; 2) URLLC, which accommodate applications
where both extra reliability and low latency are demanded,
such as remote surgery or millisecond-level load controls in
smart grids. The Radio Access Network (RAN) delivers less
than one-millisecond service latencies in this slice type; 3)
mMTC, or the massive internet of things device (mIoT), where
the connection density is very high; however, these devices
generate far less traffic than eMBB applications; 4) v2x
communications, which allows the communication between
vehicles with other infrastructure (vehicle-to-infrastructure)
and other vehicles (vehicle-to-vehicle) around them for
improved transport fluidity, safety, and comfort on the road.

Literature [15], [18] propose an optimal joint scheduler
on a two timescale framework of slot and minislot, with
the dual objectives of maximizing utility for eMBB traffic
while immediately satisfying URLLC demands. eMBB resource



allocations occur at slot boundaries, whereas URLLC traffic
is pre-emptively overlapped at the minislot timescale to
reduce latency. In [16], the authors allocate resources to the
incoming URLLC traffic while minimizing the risk of the
eMBB transmission (i.e., protecting the eMBB users with
low data rate) and ensuring URLLC reliability. They consider
the Conditional Value at Risk (CVaR) as a risk measure for
eMBB transmission. Literature [17] introduces the optimization
problem of maximizing the eMBB data rate subject to URLLC
reliability constraint, while considering the variance of the
eMBB data rate to reduce the impact of immediately scheduled
URLLC traffic on the eMBB reliability. Literature [21] studies
the heterogeneous nonorthogonal multiple access sharing of
RAN resources in uplink communications from a set of eMBB,
mMTC, and URLLC devices to a common base station.
They assume that users have homogeneous requirements.
Literature [22] proposes an End-to-End Slicing as a Service
framework for eMBB, URLLC, and mMTC applications.

The concepts of network sharing and multi-tenancy were
described in [22], [25], [26], where infrastructure provider
deploys 5G network and mobile network operators lease the
slices from infrastructure provider to serve their end-users.

Roadmap: The remainder of the paper is organized as
follows. Section II shows models of optimal power flow and
communication network in a coupled system of the power
grid and communication network. Section III formulates the
optimization problem and analyzes the complexity. Next, it
presents the proposed heuristic algorithm. Section IV evaluates
the performance of the proposed solution against benchmarks.
Finally, section V concludes the paper.

II. SYSTEM MODEL

This paper studies a coupled power grid with a geograph-
ically co-located SCADA-based communication network. A
Control Center (CC) gathers data from sensors/actuators and
dispatches control commands to generators, loads, and switches.

This section provides specifics of the optimal power flow
model in the distribution power grid and communication
network.

A. Modeling Optimal Power Flow

A distribution power grid G(V,E) is composed of buses and
transmission lines connecting the buses. There is a substation
source bus with a fixed voltage. Each line (i, j) ∈ E connects
bus i ∈ V to bus j ∈ V such that i is on the path between the
substation source bus and j. Fig. 3 shows different distribution
power grids where the dots and lines indicate set of buses (V )
and transmission lines (E), respectively. The substation source
buses, are the buses with solid line (i,e,. 650, 800, 799).
Fig.1 depicts a distribution power grid where the homes and
lines are buses (V ) and transmission lines (E), respectively.

Power flows in power systems are governed by three laws,
Ohm’s, current balance and power balance [27]. Optimal
power flow determines the power injection that minimizes total
generation cost, subject to physical and operational constraints.
In general, optimal power flow problems in distribution

networks are non-linear and non-convex due to their specific
characteristics [28]. Distribution systems are usually multiphase
and radial, the three phases are usually unbalanced, and loads
cannot be modeled independently of the voltage [29]. In this
paper, we use the technique in [30], where the authors introduce
semidefinite programming models to solve optimal power flow
problem in distribution systems. It is formulated as problem (1)
on two-phase or single-phase laterals and problem (2) on the
three-phase backbones [30].

min
∑
i∈V

Costi(ni) (1a)

s.t.

∑
i:(i,j)

diag(Sij − zijIij) + sj + xjvj =

∑
k:(j,k)

diag(Sjk)φj , j ∈ V
(1b)

vj = v
φij
i − (Sijz

H
ij + SHij zij) + zij lijz

H
ij , (i, j) ∈ E

(1c)
vi ≤ diag(vi) ≤ v̄i, i ∈ V (1d)

v0 = V src0 (V src0 )H (1e)[
v
φij
i Sij
SHij lij

]
≥ 0, (i, j) ∈ E (1f)

min
∑
i∈V

Costi(ni) (2a)

s.t.

∑
i:(i,j)

diag(M(S012
ij − z012ij L012

ij )MH) + sj

+ x012j v012j =
∑
k:(j,k)

diag(MS012
jk M

H)
(2b)

v012j = v012i − (S012
ij z012,Hij + S012,H

ij z012ij )+

z012ij l012ij z012,Hij

(2c)

vi ≤ diag(Mv012i MH) ≤ v̄i, i ∈ V (2d)

v0120 = V 012,src
0 (V 012,src

0 )H (2e)[
v012i S012

ij

S012,H
ij l012ij

]
≥ 0, (i, j) ∈ E (2f)

Here, vi = ViV
H
i , lij = IijI

H
ij and Sij = V

φij
i IHij , where

H indicates the Hermitian transpose. Vi = V abI = [V ai , V
b
i ]T

(assuming node i has two phases a, b) and Lij vectors define
the nodal voltage of bus i and line (i, j), respectively, and
φi and φij denote their phases. If the power system is on
the three-phase laterals, voltages in phase components are
transformed into symmetrical components as V abc = MV 012,
such that M is a normalized 3× 3 matrix and MH = M−1.

Objective functions (1a) and (2a) minimize the total
generation cost of the power grid, where Costi is the
generation cost of node i and ni ∈ C|φi| is the nodal injection
at node i. Constraints (1b) and (2b) impose the power
flow balance for each bus, while constraints (1c) and (2c)
demonstrate Kirchoff’s voltage law along each line. (1d) and
(2d) enforce the bounds on the nodal voltage, and constraints
(1e) and (2e) set the voltage at the substation source bus. (1f)



and (2f) are the positive semidefinite constraints.
The CC houses the control center in the SCADA-based

communication network and has updated information of the
elements in the power grid which are connected to them
through slices. Based on the power grid information, it
determines the power injection of all buses by solving the
optimal power flow problem (1) or (2).

B. Communication Network & Network Slicing

The dominant trend in 5G deployment is small cell base
stations. Each small cell consists of small low-power antennas
and are always connected by fiber optic cable attached to the in-
frastructure like street lights, utility poles, or slimline poles [4].

To control the interference between small cells, we use the
Fractional Frequency Reuse (FFR) technique [41]. In FFR, the
coverage area in each cell is divided into inner and outer zones.
Every cell transmits in the same frequency in the inner zone
(which allocates the major part of the resources), while the
outer zones uses different resources to reduce interference. In
this work, we use the homogeneous small cells deployment
with FFR technique, as shown in Fig. 2. In this context, we
use words ‘small cell’ and ‘cell’ interchangeably.

Based on the various requirement of the smart grid, discussed
in Table. I, we consider two different slices: mMTC slice for
monitoring purposes, which is required in uplink direction;
and URLLC slice for controlling purpose, which is needed in
downlink direction. A centralized CC is connected to all gNBs.
The CC receives/sends information to/from any node if it is
connected to that particular node through mMTC/URLLC slice.

Orthogonal Frequency Division Multiple Access (OFDMA)
is used as the multiple access in this work. Note that we only
consider one numerology (subcarrier spacing) here. OFDMA is
commonly used in 5G [9]–[11] due to its powerful performance
in dealing with multipath signals and compatibility with
multi-input multi-output (MIMO) antennas. In OFDMA, the
bandwidth is divided into small divisions called physical
resource blocks where each physical resource block is 180 kHz
and has 12 adjacent OFDM subcarriers [32]. The single physical
resource block is allocated to a single device for at least a
single transmission time interval that is equal to 1 ms [32].

The infrastructure provider allocates resource blocks to
each MVNO m ∈ M based on its service level agreement
(SLA) which determines number of required resource blocks
and is not less than κm|N |. Here, κm is the pre-agreed access

Figure 2: Network model showing FFR frequency assignment for different small cells.
In each small cell, the blue is the part of the bandwidth assigned to the inner zone,

while the colored parts are for outer zones [31]

ratio between infrastructure provider and MVNO m, such that∑
m∈M κm ≤ 1.
Our analysis implements a constant transmission power P

for all gNBs for inner and outer zones in the coverage area
of gNB. Moreover, we assume all communication nodes have
battery backups, and there is no power limitation for uplink
transmitting.

The proxy objective maximizes spectral efficiency of
the network, which requires rate calculation. Suppose that
PLv, ∀v ∈ V is the the total path loss between the serving
gNB and node v in a cellular network, which considers both the
distance-dependent macroscopic and the shadow fading path
loss components. The macroscopic path loss is given by [11]:

Ldb = 40(1− 4× 10−3h) log10(d/1000)−
18 log10(h) + 21 log10(fc) + 80, (DB)

(3)

where h, d and fc are the gNB antenna height (m), the distance
between gNB and node v (m), and the carrier frequency (MHz),
respectively. The shadow fading path loss component is as-
sumed to be a Gaussian random variable with zero mean and σ
standard deviation (dB). Considering Xv the log-normal shadow
fading path loss of node v, hence the total path loss (PLv)
and the linear gain (Gv) between gNB and node v are [11]:

PLv = Ldb + log10(Xv), (DB) (4)

Gv = 10−PLv/10.) (5)

The maximum achievable rate has an upper theoretical
bound represented by the well-known Shannon formula:

ru ≤ c = B log2(1 +
PGv
N + I

). (6)

Here, B is the allocated bandwidth, N and I denote the thermal
noise power and interference. As we use FFR technique, we
ignore interference part I .

Main notations used in this paper are described in Table II.

III. PROBLEM FORMULATION

A. Underlying Optimization Problem

A SCADA-based system cannot work adequately without
a properly designed communication network. The main
improvement of this paper is providing sufficient observability
and controllability over distribution power grids.

Although power flow problems aim to maximize the total
power served after balancing the unbalanced system, this
objective function is not an explicit function of our decision
variables. To address this challenge, we propose using a proxy
objective function as follows.

Suppose the owner of infrastructure provider divides
network bandwidth into |N | resource blocks. We have T slots
for scheduling; hence, T × |N | resource blocks are available
to allocate in total. We formulate our problem as (7) for each
time-slot t ∈ T , each cell and each MVNO m ∈ M which
is shown in below:



max
1

|N |
∑
v∈V

βv
∑
s∈S

αs
∑
n∈N

xsnv r
sn
v (7a)

s.t.
∑
v∈V

∑
s∈S

asvx
sn
v ≤ 1, ∀n ∈ N (7b)∑

v∈V

∑
s∈S

∑
n∈N

xsnv ≤ κm|N | (7c)∑
v∈V

∑
n∈N

xsnv P ≤ Pmax, ∀s ∈ sU (7d)

xsnv ≤ 0, ∀v ∈ V, s ∈ S, n /∈ θv (7e)
Pr{Ds

v ≥ Ds
max} ≤ ε, ∀v ∈ V, s ∈ sU (7f)

xsnv ∈ {0, 1}, ∀v ∈ V, s ∈ S, n ∈ N (7g)

Here, S = {sM , sU} is the set of sets of all possible slices,
mMTC and URLLC, respectively. V indicates set of all nodes
in the power grid. The objective function (7a) provides the max-
imum spectral efficiency through the allocation of the available
resources to nodes. αs shows the priority of slice s ∈ S. Fur-
thermore, as some nodes are more critical in the power grid, we
prioritize nodes by parameter βv . Both αs and βv are normal-
ized values. The binary variable xsnv indicates that a particular
MVNO in a particular cell assigns resource block n to node v
to provide requirement of slice s, where rsnv indicates the max-
imum achievable rate. Main notations are described in Table II.

To avoid interference, each resource block is assigned to only
one node at each timeslot of scheduling. This is guaranteed
by constraint (7b). Parameter asv = 1 shows that node v needs
slice s; otherwise it is 0. Constraint (7c) makes sure that the
total number of assigned resource blocks to nodes by MVNO
m is not exceeded. Because of the limited transmit power of
gNB, the allocated power of all nodes is subjected to constraint
(7d), where Pmax is the maximum transmission power of gNB.
Constraints (7e) imposes the FFR technique. Because there
is no mobility in the power grid, all nodes in the same zone
share the same range of frequency depending on their location.
Here, θv indicates set of resource blocks associated to the zone
which node v is located. Constraint (7f) guarantees the delay
of node v for URLLC slice. The corresponding delay outage
probability is given by [9]:

Pr{Ds
v ≥ Ds

max} = e−(
∑
n∈N xsnv rsnv −λ

v
max)D

s
max

,∀v ∈ V, s ∈ sU
(8)

where Ds
v and Ds

max are the delay of node v and the
maximum tolerable delay for slice s, respectively. λvmax is
the data arrival rate of packets in the URLLC slice from the
CC to node v. We assume the downlink queue for the URLLC
slice for node v is an M/M/1 queue.

Problem (7) is non-linear integer programming. Regular
non-linear or integer optimization techniques can not be applied
in such a formulation since the integer decision variables lie
within the log function in the objective function (7a).

Table II: Table of notations

Notation meaning
Vi nodal voltage of bus i
lij nodal voltage of line (i, j)

Costi generation cost of node i
ni nodal injection at node i
0 index of substation bus
zij impedance of line (i, j)
xj nodal shunt capacitance
M Set of MVNOs

S = {sU , sM} Set of sets of URLLC slices and mMTC
slices

N Set of resource blocks
V set of nodes (users) in power grid
xsnv Binary variable, 1 if the corresponding

MVNO assigns resource block n to node
v in order to provide the requirement of
slice s

asv binary parameter, 1 if node v needs slice
s

θv set of resource blocks associated to the
zone which node v is located

κm access ratio between infrastructure
provider and MVNO m

P Transmission power of gNB to a
particular node

Pmax Maximum transmission power of gNB
for each MVNO

αs Priority of slice s
βv Priority of node v

Dmax
s maximum tolerable delay for slice s ∈ S

B. Complexity analysis

We look at a special case of our general problem by making
some assumptions: (i) κm, the access ratio between infras-
tructure provider and MVNOs are equal to 1 and |N | is large
enough to be unconstrained; thus constraint (7c) is unnecessary.
(ii) All required slices are URLLC type and all nodes require
URLLC slice, hence asMv = 0, asUv = 1, ∀v ∈ V . (iii) We
stretch the boundary of the inner zone to the edge of the cell
edge and assign all resources to the inner zone; hence, equation
(7e) is relaxed. (iv) Ds

max = ∞; thus constraint (7f) is no
longer needed. (v) αs = 1 and βv = 1 for all slices and nodes,
respectively. Therefore, problem (7) changes to problem (9):

max
1

|N |
∑
v∈V

∑
n∈N

xsnv r
sn
v (9a)

s.t.
∑
v∈V

xsnv ≤ 1, ∀n ∈ N (9b)∑
v∈V

∑
n∈N

xsnv P ≤ Pmax, (9c)

xsnv ∈ {0, 1}, ∀v ∈ V, s ∈ sU , n ∈ N (9d)

Theorem 1. Problem (9) is NP-hard.

Proof. We prove the NP-hardness of (9) by a reduction from



0-1 knapsack problem: given a set of I items, each with value
Vi and weight Wi (i = 1, ..., I), select subset S of items such
that

∑
i∈S Vi is maximized while Wi ≤ Ω, for a given size

Ω of the knapsack.
Construction: For each item i, construct a resource block n,

which is given by the particular MVNO to node v in order to
satisfy requirement of slice s. For this item, fix the value and
cost equal to rsnv

|N | and P , respectively, and let Ω = Pmax.
Claim: The optimal solution of (9) gives the optimal solution

to 0-1 knapsack problem.
Proof of the claim: The optimal solution of (9) assigns each

resource block to at most one node in order to serve the require-
ment of the requested slice. Therefore, the assignment decision
is to simply assign resource block n ∈ N to node v ∈ V to sat-
isfy requirement of slice s ∈ sU if xsnv = 1; or, assign nothing
if xsnv = 0. Let S be the set of indices of all assigned resource
blocks to nodes under the optimal solution to (9). Then, the total
throughput rate equals

∑
i∈S Vi, and

∑
i∈S Wi ≤ Ω = Pmax.

Selecting all items corresponding to the combination of nodes
and resource blocks assigned by the optimal solution of (9)
provides the optimal solution to 0-1 knapsack problem.

Remark: Proving NP-hardness for the special case shows
that the problem is NP-hard in the general case as well.

We now develop efficient algorithms for general problem (7).

C. Heuristic Algorithm

We propose greedy heuristic in Algorithm 1 of the general
problem (7). Here, |xsnv |k = {xsn1

v , ..., xsnkv } indicates
assignment of k resource blocks to node v in order to satisfy
requirement of slice s.

Algorithm 1: Greedy Heuristic

1 Input: Input parameters of (7)
2 Output: Resource blocks assignment to nodes for

different slices xsnv

1: for each node and each demanded slice, calculate k,
minimum number of required resource blocks to satisfy
requirement of needed slices

2: S ← ∅;
3: while ∃ n ∈ N \S such that S ∪ |xsnv |k satisfies (7b)-

(7f) and N \S ≥ k do
4: S∗ ← arg max|xsnv |k: S∪|xsnv |ksatisfies (7b)-(7f) objective

(7a) under assignment of (S ∪ |xsnv |k);
5: S ← S ∪ S∗;
6: Convert S to xsnv ;

IV. PERFORMANCE EVALUATION

This section demonstrates performance of the proposed
algorithm on different distribution electric power test systems.

A. Benchmarks and metrics

To assess performance of the proposed algorithm, we use
the following benchmarks:
1) the greedy Algorithm 1;
2) the BC method, Given power grid topology G(V,E), this
benchmark sequentially considers the betweenness centrality
of the nodes, which is the frequency that a node appears on
the shortest paths between all pairs of nodes in the graph [33].
Then, it assigns resource blocks to the nodes in order to satisfy
requirement of their demanded slices in the descending order
of their betweenness centrality, i.e. delay for URLLC slice and
connectivity for mMTC slice;
3) the Top-K solution, which sequentially considers each type
of slice, computes the total number of required resource
blocks for satisfying requirement for each node, Λsv, and
then assigns resource blocks for slice s in descending order
of Λsv until exhausting available resource blocks or violating
power constraint.
4) Random method, which randomly selects nodes and assigns
resource blocks to them until exhausting available resource
blocks or violating power constraint. Here, 100 cases were
tested and the average result is noted.

All algorithms are implemented in MATLAB R-2020b.
The performance of every solution is evaluated by the total
power served after balancing the unbalanced test feeders
in the distribution power system using optimal power flow
model in section (II-A) for the given communication network,
which is comprised of different slices as microwave links and
sensors/actuators associated with power grid nodes. We show
the percentage of the power served with respect to the case of
secure and full connectivity between all nodes and the CC.

B. Simulation Setup

We evaluate the proposed solutions on the IEEE 13-, 34-
, and 37-node test feeders [34], which represent simplified
models of actual distribution circuits. These test feeders include
unbalanced loading, switches, shunt capacitors and voltage
regulators to compensate the severe voltage drops which
caused by loaded transmission lines. Test feeders are shown in
Fig. 3. In our simulations, we also insert different distributed
generations in these test feeder models, such as rooftop solar
PV systems. Table. III indicates the installation of distributed
generations on particular buses in test feeders.

Table III: The bus location of installed distributed generations in the IEEE test feeders.

test feeder installed DG
IEEE 13-node 684
IEEE 34-node 836, 842
IEEE 37-node 734, 727, 720

Calculation of power flow model, equations (1) and (2),
were performed using CVX [35] integrated in MATLAB. The
CC, which performs the power flow model, is situated on the
highest degree nodes in the test feeders and communicates
with other nodes. We assume that all communication nodes
(including sensors, actuators, and relays) have battery backups
and are hence cannot be affected by failures in the power grid.
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Figure 3: Different distribution test feeders.

The test feeders are mapped to an urban area while nodes are
assigned to city blocks. In most cities, streets are typically laid
out on a grid plan so that city blocks are square or rectangular.
In this work, we consider a typical city block in Chicago
which is 330 by 660 feet (100 m × 200 m) [36]. As we only
consider line-of-site (LOS) transmissions, we assume antennas
are placed on the roof of the blocks. We use homogeneous
cells deployment and one gNB is considered for each cell in
the center with radius 250 meter and maximum transmission
power Pmax = 20 W and P = 30 dBm. Each test feeder may
be covered by multiple cells. We set small cell parameters
based on [26]. .

We assumed a system bandwidth of W = 20 MHz with
the carrier frequency 2 GHz. As we use FFR technique, the
total bandwidth of each cell is divided between the inner zone
and three outer zones. We assume that 2/3 of resources are
assigned to the inner zone, and 1/9 of resources are assigned to
each outer zone. The inner zone boundary is defined based on
the path loss threshold, which is set to the path loss between
the gNB and a node in the 2/3 radius of the cell. Furthermore,
for the sake of simplicity, we assume only one MVNO exists
in each cell with SLA equal to 1. The results can be simply
extended to numerous MVNOs with different SLAs.

In this work, we suppose that all nodes require mMTC
slice for the monitoring purpose, while URLLC slices are
only needed by generators, switches, shunt capacitors, and
regulators to receive the control command from the CC.
Ds
max, the maximum tolerable delay for slice URLLC slice

is set to 0.005 second [9]. Note that the number of required
resource blocks to assign the needed slice varies depending
on the channel gain between the gNB and nodes.

C. Results

This section first explains the settings used for the proposed
greedy algorithm. Then, we compare all benchmarks together.

1) Setting Design Parameters:
Comparison under node weight definition:
Recalling that the priority of nodes, βv, represents the

importance of observing and controlling node v by the CC.
We examine both the topological (the degree of the node in the
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Figure 4: Performance evaluation under different node weights (βv) for various test
feeders in terms of served power after balancing the test feeders with respect to the

case of secure and full connectivity between all nodes and the CC (slices are placed by
the greedy heuristic under |N | = 20 and

αsU
αsM

= 3)

power system topology) and the service (the injected power)
importance of node v.

We compare performance of the greedy algorithm under five
different definitions of weights: (i) degree, (ii) BC (Betwenness
Centrality), (iii) power injection of nodes, (iv) power injection
× degree, and (v) power injection × BC. The nodes’ weights
are normalized here. αs for URLLC and mMTC slices are set
to 3 and 1, respectively.

The results in Fig. 4 shows that the node weight definition
of “the BC of the node × the real power injected at the node”
attains the best performance for all test feeders as it considers
both the topological (BC) and the service (power injection)
importance of nodes. For the rest of the results in this section,
we will use this definition of weight for the greedy heuristic.

Comparison under different slice importance:
Although monitoring the status and collecting data of various

power grid nodes and sending relevant control signals are both
critical in the proper operation of power systems, the controlling
aspect has more fundamental importance. Nonetheless, SCADA,
through dispatching control commands performs functions such
as feeder voltage or VAR control, feeder automatic switching,
etc. To the best of the authors’ knowledge, there is no data to
compare the importance level of controlling over monitoring
action. Therefore, we compare performance of the greedy
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Figure 5: Performance evaluation under different importance of URLLC slice over
mMTC slice (

αsU
αsM

) for various test feeders in terms of served demand after
balancing the test feeders with respect to the case of secure and full connectivity

between all nodes and the CC (slices are placed by the greedy heuristic under
|N | = 20 and βv = power injection × BC)

algorithm under different ratio of αs for URLLC over mMTC
slice.

In this scenario, we fix αsM = 1 and change αsU . These
values indicate αs for mMTC and URLLC slices, respectively.
As it can be seen, the performance improves considerably
for larger amount of αsU , which shows the importance of
controlling aspects of the SCADA network through dispatching
control commands. The performance is almost completely
insensitive to the αUS ≥ 3 for all test feeders. For the rest
of the results in this section, we will use ( αsUαsM

= 3 ) for the
greedy heuristic.

2) Overall Comparison of All baselines:
Finally, Figs. 6-8 compare the performance of all algorithms

in terms of served power in power grids after balancing different
test feeders. Here, as the number of resource blocks increases,
the control network delivers higher power. This is because
more nodes are observable and controllable; hence the total
served power improves. Moreover, results show that the greedy
heuristic consistently exceeds all baselines, which emphasizes
the importance of strategically placing slices considering system
topology, generation/load contribution, and the importance of
slices. The second best algorithm is the BC method, which
prioritizes nodes with higher betweenness centrality. Intuitively,
these nodes substantially influence other nodes in the radial
distribution power grids. Next, the Top-K solution outperforms
notably better than random benchmark. The results follow the
same trend for all test feeders.

We also compare our results with the scenario of using
Power Line Carrier Communication (PLCC) technology in
the communication network when failures occur. PLCC links
carry control communications over power lines. We start with
a baseline where all links are PLCC. Then we impose a bus
outages incident in the power grid. The affected PLCC links
are are failed thus cutting off communications. The reason
behind this realistic assumption is that outages are inevitable
in the power grid, and while microwave links are immune
to power grid failure, the loss of a power transmission line
disables a PLCC link. Here, we impose initial bus outages of
5% and 10% of total nodes and after the cascade ends, we
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Figure 6: Performance evaluation under different number of resource blocks (|N |) for
IEEE 13-node test feeder in terms of served demand after balancing the test feeders

with respect to the case of secure and full connectivity between all nodes and the CC
(for greedy heuristic under
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= 3 and βv = power injection × BC))
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Figure 7: Performance evaluation under different number of resource blocks (|N |) for
IEEE 34-node test feeder in terms of served demand after balancing the test feeders

with respect to the case of secure and full connectivity between all nodes and the CC
(for greedy heuristic under

αsU
αsM

= 3 and βv = power injection × BC))

run the optimal power flow problem to balance test feeders.
For each case, 100 random sets of node outages have been
considered. By comparing the results in Table IV and Figs. 6-8,
it is sensible that the proposed heuristic substantially provides
higher served power which shows the importance of a secure
communication network.
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Figure 8: Performance evaluation under different number of resource blocks (|N |) for
IEEE 37-node test feeder in terms of served demand after balancing the test feeders

with respect to the case of secure and full connectivity between all nodes and the CC
(for greedy heuristic under

αsU
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= 3 and βv = power injection × BC))



Table IV: The impact of initial bus outages in percentage of served power after
balancing the test feeders (with respect to the case of secure and full connectivity

between all nodes and the CC) in PLCC deployment on different the IEEE test feeders.

test feeder 5% 10%
IEEE 13-node 68.945 52.865
IEEE 34-node 73.738 54.279
IEEE 37-node 71.912 44.539

V. CONCLUSION & FUTURE WORK

This paper helps to clarify the challenges and trends of RAN
network slicing and advances the practicality of using network
slicing technology in the distribution power grid.

5G Network slicing saves bandwidth and reduces latency, and
meets the ultra-low latency requirement of millisecond-level
control services on the power grid.

In this work, we look at the bandwidth allocation in Radio
Access Network (RAN) 5G-NR network slicing to maximize
spectral efficiency, subject to providing each sensor and actuator
in the power grid a guaranteed minimum requirement of slices.
We not only proved the NP-hardness of the proposed solution,
but we also developed a greedy heuristic to solve the problem
quickly. Extensive simulations on the IEEE 13-, 34-, and 37-
node test feeder showed that the proposed algorithm achieves
efficacy in total power served after balancing the unbalanced
power grid.
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