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A B S T R A C T

The ground truth for cascading failure in power system can only be obtained through a detailed dynamic model
involving nonlinear differential and algebraic equations whose solution process is computationally expensive.
This has prohibited adoption of such models for cascading failure simulation. To solve this, we propose a
fast cascading failure simulation approach based on implicit Backward Euler method (BEM) with stiff decay
property. Unfortunately, BEM suffers from hyperstability issue in case of oscillatory instability and converges
to the unstable equilibrium. We propose a predictor–corrector approach to fully address the hyperstability issue
in BEM. The predictor identifies oscillatory instability based on eigendecomposition of the system matrix at the
post-disturbance unstable equilibrium obtained as a byproduct of BEM. The corrector uses right eigenvectors to
identify the group of machines participating in the unstable mode. This helps in applying appropriate protection
schemes as in ground truth. We use Trapezoidal method (TM)-based simulation as the benchmark to validate
the results of the proposed approach on the IEEE 118-bus network, 2383-bus Polish grid, and IEEE 68-bus
system. The proposed approach is able to track the cascade path and replicate the end results of TM-based
simulation with very high accuracy while reducing the average simulation time by ≈ 10−35 fold. The proposed
approach was also compared with the partitioned method, which led to similar conclusions.
1. Introduction

Cascading failure study in highly complex dynamical systems like
electric power grids is challenging as it demands long-term simu-
lations of models involving solutions of many nonlinear differential
and algebraic equations. As a result, it is very difficult to perform
statistical analysis of cascading failure using such models. This has led
to application of less accurate but computationally manageable quasi-
steady-state (QSS) models; see for example [1] for a comprehensive
source of references. The objective of this paper is to propose an
approach for fast cascading failure simulation that accurately traces the
cascade path and lends itself to statistical analyses.

At the outset, we clarify that our goal is to perform deterministic
cascading failure analysis, which implicitly assumes that all systems
act as expected during the cascade, i.e., potential mistripping of pro-
tective relaying and other malfunctions are not considered during
the cascade [2,3]. This is in contrast to probabilistic approaches that
consider that the evolution of the power system after an initial set of
contingencies can follow multiple trajectories, see for example [4,5].
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1.1. Literature on dynamic simulation of cascading failure

Unlike their QSS counterpart, the literature on dynamic models
of cascading failure is relatively limited — see for example [2–9]
and references therein. The papers can be broadly divided into three
categories.

(1) Review- & proposition-type papers: For example, authors in [6]
present a brief review of existing modeling techniques and simulation
frameworks for cascading failure analysis, and discuss open questions
related to interaction between protection systems and cascading failure.
Authors in [7] propose the development of a dynamic power system
simulator that has the ability to tune the present direct linear solver,
nonlinear solver, and the DAE integrator. In the same line, Ref. [8]
suggests a parallelized algorithm for cascade simulations. The focus
is to increase the simulation speed through parallelization strategy
intended for deployment on a super computer.

(2) Papers proposing hybrid cascading failure models: Authors in [4]
developed a cascading failure simulation tool called dynamic con-
tingency analysis tool (DCAT), which employs a hybrid approach of
simulation that judges the stress of the system and switches between
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QSS and dynamic simulations. In addition to standard relay modeling,
misoperations like stuck breakers are considered and corrective actions
in post-transient steady-state conditions are included in the proposed
model.

(3) Papers proposing dynamic cascading failure models: Paper [5] pro-
posed a two-Level probabilistic risk assessment of cascading outages.
Dynamic cascade events are separated into two categories, slow and
fast cascade. The paper combines probabilistic simulations for the slow
and the fast cascading events using different degree of details in the
dynamic models.

Schafer et-al [9] proposed to include network dynamics in the
model to study dynamically-induced cascading failure. They repre-
sented the synchronous generator dynamics through swing equations.
However, swing dynamics might not constitute an adequate represen-
tation of the synchronous machines as exciters play an important role
in electromechanical oscillations [10].

Ref. [3] proposed a detailed dynamic model for deterministic cas-
cade propagation analysis. The method is tested with randomly selected
𝑁 − 2 contingencies. The authors conclude that the load model is very
critical in evaluating the risk of cascading failures. It was also shown
that the DC QSS model can reasonably approximate the cascade path
in the early stages and deviates from the ground truth in later stages.

Paper [2] proposed a multi-time period two-stage stochastic mixed-
integer linear optimization model to specify the optimal investment on
the network to enhance system’s resilience against natural disasters.
The model uses dynamic simulations for cascading failure simulation,
and the multi-time period restoration, modeled through a DC optimal
power flow initialized by the solution of dynamic simulation.

1.2. Gaps in literature

The first category of papers [6–8] either reviewed the state-of-
art or made propositions, but no cascading failure simulations were
performed in these works.

Although references in the second [4] and the third category [2,3,5]
have made valuable contributions, they still suffer from the com-
putational burden faced by the simulation of dynamic models. For
example, [3] effectively simulated 88 cases in Polish system out of 1200
that can be called cascades because most (1081) did not have any de-
pendent outages (i.e., any further outages following the initial outages)
leading to short simulations, while 31 diverged. Hybrid simulation [4]
strategy can reduce simulation time, but may face accuracy issues as
it is complicated to switch between dynamic and QSS simulations. At
any rate, analysis in [4] starts with dynamic simulations — hence the
bottleneck remains.

The reason behind this is the fact that dynamic simulations in these
works use a similar structure and the same integration methods as in
the conventional planning models. The objective of traditional planning
studies is to perform 𝑁 − 1 and 𝑁 − 2 contingency simulations that
normally last up to 30 s. They are computationally very expensive and
not suitable for running cascading failure simulations.

1.3. Contribution of our work

We propose a fast time-domain cascading failure simulation ap-
proach based on implicit Backward Euler method (BEM) with stiff
decay property, in which large time-step can be used to speed up simu-
lations. However, one disadvantage of BEM is the hyperstability issue in
case of oscillatory instability that leads to convergence to the unstable
equilibrium and produces erroneous results. This has prevented using
BEM in power system studies, since it is well-known that oscillatory
instability is manifested in many power systems — please see [10,11]
for example. The oscillatory instability stems from the lack of damping
torque contribution of a generator or multiple generators [10,11] that
manifests in the form of local or inter-area oscillations. Therefore, it is
imperative that BEM will face hyperstability issues in such cases.
We propose a predictor–corrector (PC) approach to fully address the
hyperstability issue in BEM. The predictor in PC-approach identifies
possible oscillatory instability using eigendecomposition of the system
matrix corresponding to the linear model obtained around the post-
event unstable equilibrium, which BEM converges to. It is worthwhile
to mention that the system matrix is obtained as a by-product of BEM.
Next, the corrector uses right eigenvectors to identify the machine or
group of machines participating in the unstable mode. This aids in
applying appropriate protection schemes as in ground truth.

We also propose an adaptive center of inertia (COI) reference frame-
based approach that leads to a time-invariant generator rotor angle and
bus voltage angles, which ensures faster convergence of Newton iter-
ations. Moreover, unlike the traditional COI frame-based method [10,
11], our approach seamlessly works for cascading failure simulation
leading to island formation. The objective of our proposed method is
to trace the cascade path during simulation and reproduce the exact end
result of cascade with respect to the ground truth. We use a dynamic
model which applies Trapezoidal method (TM) for numerical integra-
tion as a benchmark to test our proposed model for cascade simulations.
Results on the IEEE 118-bus system, IEEE 68-bus system, and the 2383-
bus Polish network show high accuracy and significant speedup in
simulation with multi-tier cascading failures. We also show that the
proposed approach maintains a significant speedup gain compared
to the partitioned approach with an explicit numerical integration
method.

The following is a summary of the major contributions made in this
paper–

1. Proposing a fast time-domain cascading failure simulation ap-
proach based on BEM.

2. Addressing the hyperstability issue of BEM in case of oscillatory
instability through a new PC-approach.

3. Proposing a novel adaptive COI-reference frame for cascading
failure simulations that seamlessly work during island formation
and ensures faster convergence of Newton iterations.

4. Providing comprehensive comparisons of proposed BEM-PC
method against simultaneous approach with implicit TM method,
partitioned approach with Runge–Kutta (R–K) method, and AC-
QSS method.

2. Dynamic simulation: Preliminaries & state-of-art

We first look into the structure of traditional dynamic simulation
methods used for power system planning studies. Next, we elaborate
on the challenges in using them for power system cascading failure
simulation.

2.1. Dynamic simulation preliminaries

Power system’s dynamic model is typically represented by a set of
nonlinear differential algebraic equations (DAEs) [10]. These equations
can be represented in the following compact form after augmenting
them with an implicit discrete variable 𝑧 to model relay actions when
the related constraint involving function ℎ (⋅) is violated

�̇� = 𝑓 (𝑥, 𝑉 , 𝑧) (1)

0 = 𝐼(𝑥, 𝑉 , 𝑧) − 𝑌𝑁 (𝑧)𝑉 (2)

0 ≻ ℎ(𝑥, 𝑉 , 𝑧). (3)

Here, 𝑥 ∈ R𝑛 is the state vector consisting of individual device
states, 𝑉 ∈ R𝑚 denotes the vector of real and imaginary components
of bus voltages, 𝑧 ∈ Z𝑝 is a discrete variable whose elements can
assume values 0 or 1 indicating status of circuit breakers operated by
relays, 𝐼 ∈ R𝑚 constitutes of real and imaginary components of current
injection phasors in buses, 𝑌 ∈ R𝑚×𝑚 is the admittance matrix of
𝑁
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network in its real form (i.e., separating the real and imaginary parts
of the equations), and ℎ ∶ R𝑛 × R𝑚 × Z𝑝 → R𝑞 indicates line currents
should be below their ratings and bus voltages below corresponding
thresholds, among others. If the inequality constraint (3) is violated, the
relevant relay will determine the trip time 𝑇𝑡𝑟𝑖𝑝 and start a countdown
process. When 𝑇𝑡𝑟𝑖𝑝 becomes zero, the corresponding element of 𝑧,
whose nominal value is 1, also becomes 0. This changes the 𝑌𝑏𝑢𝑠 and/or
the injected current 𝐼 . If the inequality constraint violation no longer
holds before 𝑇𝑡𝑟𝑖𝑝 goes to zero, the countdown stops. The details of
different types of relay actions have been included in Section 4.1.

Dynamic simulation in power system solves an initial value problem
(IVP) on the DAEs (1), (2) with a set of known initial conditions
(𝑥0, 𝑉0, 𝑧0) ∈ R𝑛 × R𝑚 × R𝑞 . For a cascading failure simulation, such
IVPs are solved repeatedly following each event, where an event refers to
a discontinuity introduced by fault, line tripping, load shedding, and so on.

There are two philosophies for solving the IVPs in power systems
literature — partitioned and simultaneous [10]. In the partitioned
approach, the algebraic and the differential equations are solved se-
quentially, whereas the simultaneous approach uses implicit integration
methods, which combines them to pose them as a set of nonlinear
algebraic equations. Commercial simulation softwares use second-order
Adams–Bashforth (AB2) method [12] – an explicit method – in the
partitioned approach. It is well-known, see for example page 861
of [10], that production-grade stability programs use partitioned ap-
proach because of programming flexibility, simplicity, reliability, and
robustness. However, it has also been mentioned that its main draw-
back is numerical instability of explicit methods. Such methods are
typically run at a fixed time step to avoid numerical instability issues. On
the other hand, simultaneous approach with implicit integration methods can
run with a variable time-step. They are more widely explored in academic
research [3], and is followed in our work.

2.2. Simultaneous solution: State-of-art

Here we briefly describe state-of-art on the simultaneous approach
where perhaps the most popular implicit integration method is TM [3].
In the context of solving DAEs described in the previous section, note
that 𝑧 is an implicit variable and does not appear explicitly in the
numerical integration process, except that it brings in discontinuities.
To avoid clutter, going forward we will drop 𝑧 from equations and
will describe how discontinuities are handled later. Discretization of
(1) using TM results in the following expression

𝐹 (𝑥𝑛+1, 𝑉𝑛+1) = 𝑥𝑛+1 − 𝑥𝑛 −
𝛥𝑡
2
(𝑓 (𝑥𝑛+1, 𝑉𝑛+1)

+ 𝑓 (𝑥𝑛, 𝑉𝑛))
(4)

where, 𝛥𝑡 is the step-size of integration, subscript 𝑛 corresponds to time
instant 𝑡𝑛, and 𝐹 is the mismatch function for differential equations. The
mismatch function for algebraic equations is defined as follows

𝐺(𝑥𝑛+1, 𝑉𝑛+1) = 𝑌𝑁𝑉𝑛+1 − 𝐼(𝑥𝑛+1, 𝑉𝑛+1) (5)

here, 𝑥𝑛+1 and 𝑉𝑛+1 are found by simultaneously solving the following
onlinear algebraic equations

𝐹 (𝑥𝑛+1, 𝑉𝑛+1) = 0, 𝐺(𝑥𝑛+1, 𝑉𝑛+1) = 0. (6)

Typically, Newton’s method [13] is used for solving these equations.
or the (𝑘 + 1)th iteration of Newton’s method, we have
[

𝑥𝑘+1𝑛+1
𝑉 𝑘+1
𝑛+1

]

=

[

𝑥𝑘𝑛+1
𝑉 𝑘
𝑛+1

]

+

[

𝛥𝑥𝑘𝑛+1
𝛥𝑉 𝑘

𝑛+1

]

(7)

[

−𝐹 (𝑥𝑘𝑛+1, 𝑉
𝑘
𝑛+1)

−𝐺(𝑥𝑘𝑛+1, 𝑉
𝑘
𝑛+1)

]

=
⎡

⎢

⎢

⎣

𝜕𝐹
𝜕𝑥𝑛+1

𝜕𝐹
𝜕𝑉𝑛+1

𝜕𝐺
𝜕𝑥𝑛+1

𝜕𝐺
𝜕𝑉𝑛+1

⎤

⎥

⎥

⎦

𝑘

𝑛+1

[

𝛥𝑥𝑘𝑛+1
𝛥𝑉 𝑘

𝑛+1

]

(8)

[

𝐽
]

=
⎡

⎢

⎢

𝜕𝐹
𝜕𝑥𝑛+1

𝜕𝐹
𝜕𝑉𝑛+1

𝜕𝐺 𝜕𝐺

⎤

⎥

⎥

𝑘

=

[

𝐽11 𝐽12
𝐽21 𝐽22

]

(9)

⎣ 𝜕𝑥𝑛+1 𝜕𝑉𝑛+1 ⎦𝑛+1
here, 𝐽 is the Jacobian matrix. First, 𝛥𝑥 and 𝛥𝑉 are calculated using
8), which in turn are used to update 𝑥 and 𝑉 through (7). Newton
terations are stopped when ‖[𝐹 𝑇 𝐺𝑇 ]𝑇 ‖∞ ≤ 𝜖, where 𝜖 ∈ R+ is the

tolerance for convergence.
Remarks on state-of-art:

1. Variants of Newton iterations: Three popular variants are full New-
ton’s method, dishonest/very dishonest Newton’s method (VDHN) and
quasi-Newton’s method [14].
2. Jacobian calculation: Both direct analytical method and difference
approximation method [13] have been used.
3. Solution of linear equation 𝐴𝑥 = 𝑏: Since the Jacobian is very
sparse, solving the set of linear equations (8) in the general form
𝐴𝑥 = 𝑏 takes significant advantage of this aspect during storage
and computations. Both direct solution methods like sparsity-oriented
triangular factorization [15] and KLU [16], and iterative solutions
like Preconditioned Conjugate Gradient (PCG) [17,18], and General
Minimal Residual (GMRES) method [18] have been proposed.
4. Variable time-step: To speed up the simulation, adaptive time step size
control is used based on local truncation error (LTE) [19] that leads to
large time steps when solution is not varying rapidly.
5. Suitability for cascading failure simulation: Even applying sparse com-
putations for solving (8) and using a variable time-step TM-based
solver, the state-of-art suffers from significant computational burden
during cascading failure simulation, since they take much longer than
typical 𝑁 − 1 or 𝑁 − 2 contingency simulations that last 30 s or less.
6. Handling discrete events: If the integration time step 𝛥𝑡 calculated
by the variable-step algorithm is more than the time remaining before
𝑇𝑡𝑟𝑖𝑝 becomes zero, then 𝛥𝑡 is truncated to match the tripping instant.
When 𝑇𝑡𝑟𝑖𝑝 becomes zero, at 𝑡 = 𝑡𝑛, a discrete event occurs due to
relay action, i.e., certain elements of 𝑧 becomes 0. In this case, the
following steps are performed – (a) network configuration is updated
and the corresponding 𝑌𝑏𝑢𝑠 is calculated; (b) 𝑉𝑛 is updated by iteratively
solving (5) for 𝑡 = 𝑡𝑛. To that end, 𝑌𝑁 is updated if needed and the 𝐽22
sub-matrix of the Jacobian in (9) is used. Next, updated 𝑥𝑛 and 𝑉𝑛 are

used as the initial guess for 𝑡 = 𝑡𝑛+1, i.e.,
[

(

𝑥0𝑛+1
)𝑇 (

𝑉 0
𝑛+1

)𝑇
]𝑇

=
[

(

𝑥𝑛
)𝑇 (

𝑉𝑛
)𝑇

]𝑇
is used. Eq. (8) is then iteratively solved to find

[

𝑥𝑇𝑛+1 𝑉 𝑇
𝑛+1

]𝑇
; (c) the time-step is reduced to the minimum step-size

of 𝛥𝑡𝑚𝑖𝑛 for a pre-defined period of simulation; (d) the IVPs based on
the predicted initial conditions are solved using the reduced time-step.

Going forward, we define ‘ground truth’ as the cascading fail-
ure simulation results produced by a benchmark model that uses (a)
variable-step TM [3] with 𝛥𝑡 ∈ [0.002, 1] s, 𝜖 = 10−4 that leverages an
adaptive COI reference frame-based approach described in Section 4,
(b) formulates the Jacobian analytically, (c) applies full Newton it-
erations, (d) uses sparse objects for storage and calculations, and (e)
applies Matlab’s [20] most comprehensive inversion routine for solving
(8), see flowchart in [21]. The model consists of 4th-order synchronous
generator model equipped with the same governors, static exciters, and
relays as our proposed model described in the next section, except that
the special protection scheme (SPS) is not functional, but measurement-
based. The benchmark and the proposed models are built from the first
principles in Matlab [20] and MATPOWER [22] is used for power flow
solution used during initialization. Simulation is stopped if (i) speed
variation of machines in a predetermined window length is below a
certain threshold, and no future relay actions are anticipated, or (ii) a
complete collapse is observed.

3. Proposed methodology for dynamic simulation of cascading
failure

At the outset, we define what is expected out of a dynamic cascading
failure simulation model –

1. The model should be able to capture the exact cascade propaga-
tion path as in ground truth.
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2. The model should give exact end-result of cascade as the ground
truth in terms of topology, voltage profile, frequency, and de-
mand served.

3. The model should be computationally efficient, so that statistical
analyses can be performed, which is critical for cascading failure
studies.

Even though it would be ideal if the dynamic model is able to simulate
the exact trajectories of state and algebraic variables of the system
as the ground truth and also lends itself to statistical analyses —
unfortunately, that has proven to be elusive thus far [2–9]. We argue
hat if the above objectives are met at the expense of accurate tracking of
rajectories of system variables, it should be sufficient for dynamic cascading
imulations without compromising accuracy of statistical analyses.

To that end, we propose the following (see, Fig. 3) –
a) A time-domain simulation approach based on a stiff decay integra-
ion method. More specific, we apply implicit backward Euler method
BEM) [13] for the simultaneous solution process.
b) We solve the hyperstability issue of BEM using an eigen analysis-
ased predictor–corrector method, which leverages its stiff-decay and
yperstability properties.
c) We propose functional implementation of SPS against unstable in-
erarea oscillations and generator non-first swing out-of-step protection
e.g., due to an unstable local mode).
d) We model time-delayed overcurrent (OC), local undervoltage load
hedding (UVLS), and generator first swing out-of-step relays. Note that
ther types of relays can also be modeled in the proposed framework.
e) We propose an adaptive COI frame-based approach that can seam-
essly work during island formation.

.1. BEM: Absolute stability and stiff decay properties [13]

BEM is derived using a Taylor expansion centered at 𝑡𝑛+1, which
s a first-order method [13]. Discretizing (1) using BEM results in the
ollowing expression

𝐹 (𝑥𝑛+1, 𝑉𝑛+1) = 𝑥𝑛+1 − 𝑥𝑛 − 𝛥𝑡𝑓 (𝑥𝑛+1, 𝑉𝑛+1) (10)

.1.1. Absolute stability property
First, we analyze the absolute stability property of TM and compare

t with that of BEM. The standard approach for this is to consider the so-
alled test equation �̇� = 𝜆𝑥, where 𝜆 is a complex number denoting the
igenvalue of a system matrix. The region of absolute stability is defined
s the region in the complex 𝜆𝛥𝑡-plane such that applying the numerical
ntegration method for the test equation from within this region yields
n approximate solution satisfying the absolute stability requirement
𝑥𝑛+1| ≤ |𝑥𝑛|. By discretizing the test equation using TM, we have

𝑥𝑛+1 =
2 + 𝜆𝛥𝑡
2 − 𝜆𝛥𝑡

𝑥𝑛; 𝐴𝐹 = |

2 + 𝜆𝛥𝑡
2 − 𝜆𝛥𝑡

| (11)

here, 𝐴𝐹 is called amplification factor. Therefore, the region of
bsolute stability of TM can be obtained by the region that is satisfying
𝐹 ≤ 1, which is the left half of the 𝜆𝛥𝑡 plane. Similarly, applying BEM

o the test equation results in:

𝑥𝑛+1 =
1

1−𝜆𝛥𝑡𝑥𝑛; 𝐴𝐹 = |

1
1−𝜆𝛥𝑡 | (12)

Therefore, the region of absolute stability of BEM is the entire left
half of the 𝜆𝛥𝑡 plane in addition to the entire right half plane outside the
unit circle centered at (1, 0). As shown in Fig. 1, the regions of absolute
tability in gray indicates that both TM and BEM are numerically
-stable [13].
 p
Fig. 1. Absolute stability regions of BEM (left) and TM (right) shown in gray.

Fig. 2. Rotor angle time-domain plot in SMIB system after one line outage at 𝑡 = 5
s; BEM vs TM in Left: Stable case, Right: Oscillatory instability case (hyperstability
problem of BEM).

3.1.2. Stiff decay property
In line with our argument presented earlier, in the dynamic sim-

ulation of cascading failure, one might not be interested in detailed
transient oscillatory behavior of the system as long as the expectations
are met. In this regard, using large time steps would be desired. How-
ever, the integration method should be robust enough to tolerate the
large steps. According to [13], when ℜ(𝜆𝛥𝑡) → −∞, for BEM we have

1
1−𝜆𝛥𝑡 → 0, however, for TM we have 2+𝜆𝛥𝑡

2−𝜆𝛥𝑡 → −1. This property in BEM
is called stiff decay, representing ability of BEM in taking large steps
to ignore fast oscillations in the dynamic model. On the other hand,
one should not expect TM to act like integral methods with stiff decay
property. This is due to the fact that the fast mode components of local
errors for large time steps get propagated throughout the simulation
interval [13].

3.1.3. Hyperstability issue of BEM
It is clear that the stiff decay property of BEM can be used to

our advantage for dynamic simulations of cascading failure as it helps
us take large time steps for ignoring fast oscillations and obtaining
a coarse picture of the desired trajectories. However, BEM is never
used in dynamic simulations of power system due to the hyperstability
problem [23].

When a numerical integration method solves the differential equa-
tions of an unstable system and produces a stable response, then
such a problem is called Hyperstability. This can be viewed from the
absolute stability region of Fig. 1 for BEM satisfying ℜ (𝜆𝛥𝑡) > 0 and
ℜ (𝜆𝛥𝑡) − 1)2 + (ℑ (𝜆𝛥𝑡))2 > 1. It corresponds to the right half plane
utside the unit circle of the left subfigure. The practical implication
f this is that BEM is not able to diagnose oscillatory instability if 𝜆𝛥𝑡
atisfies the above constraints.

Fig. 2 compares the performance of BEM and TM in a single machine
represented by classical model) infinite bus (SMIB) system [10] after
ripping one of the double-circuit lines at 𝑡 = 5 s. The left and the right
ubplots represent a stable and an unstable case, respectively — the
atter is simulated by a negative damping factor. In both the scenarios,
raditional model with TM is simulated with 𝛥𝑡 = 0.001 s, and BEM uses
uch larger time step of 1 s. It can be seen that for the stable case,

he stiff decay property allows BEM to obtain the exact final result as
M while producing a coarse trajectory. For the unstable case however,
he hyperstability problem of BEM is evident, where it converges to
he unstable equilibrium point. Next, we will address the hyperstability
roblem of BEM in detail.
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Fig. 3. Flowchart of proposed BEM with predictor–corrector (BEM-PC) approach. 𝑡 = 𝑡𝑖 , 𝑖 ∈ {0, 1,… , 𝑛− 1}: instants of tiers of cascade. 𝑡0 and 𝑡𝑛: instants of initial disturbance and
end of simulations, respectively. Processes that can be run using parallel processors are indicated. (b): Predictor subprocess. (c): Corrector subprocess. For fair comparison with
traditional methods, BEM-PC in this work is applied in a fully serial fashion.
3.2. Addressing hyperstability problem of BEM using predictor–corrector
approach

We propose a predictor–corrector (PC) approach to tackle the hy-
perstability problem in BEM, which is shown in a flowchart in Fig. 3.
In this flow chart, there are four key functions that are being performed
in a serial-parallel process.

3.2.1. Cascading failure simulation subprocesses (a)
In this subprocess, we run the cascading failure simulation using

variable-step BEM, where OC, UVLS, and generator first swing out-of-
step relays are modeled. The stopping criterion for BEM is similar to
TM as described earlier, i.e., simulation is stopped if (i) speed variation
of machines in a predetermined window length is below a certain
threshold and no future relay actions are anticipated, or (ii) a complete
collapse is observed. For step-size control in BEM, we use a different
method than TM,

𝛥𝑡𝑛+1 = 𝛥𝑡𝑛
𝜏

‖𝐹 0
𝑥 ‖∞

; 𝛥𝑡𝑘 ∈ [𝛥𝑡𝑚𝑖𝑛, 𝛥𝑡𝑚𝑎𝑥] (13)

where, ‖𝐹 0
𝑥 ‖∞ shows the largest component of the first mismatch vector

and 𝜏 is a hyperparameter to be tuned, see [23] for explanation.
Note that immediately following each event, we run simulation with
𝛥𝑡 = 0.002 s for a pre-determined 𝑘 steps. This ensures that the non-
oscillatory instability is captured. Moreover, if Newton iterations take
more than 𝑟 iterations for convergence at a time instant, then we
decrease time-step to 𝛥𝑡 = 0.002 s.

During the course of such a simulation, the instants of tiers (events
that alter the topology of the system) of cascade are marked by time
variable 𝑡 = 𝑡𝑖 in Fig. 3. Corresponding to each such instant, we get the
values of 𝑥 and 𝑉 as [𝑡𝑖 ∶ 𝑥𝑖, 𝑉𝑖]. Note that this subprocess runs in a
serial manner to solve a sequence of IVPs described in Section 2.

Following each such instant, there could be four broad types of
unstable scenarios so far as voltage, angle, and frequency stability
are concerned – (1) local voltage instability, (2) frequency instability,
(3) non-oscillatory angle instability, and (4) local/interarea oscillatory
angle instability. Except the last phenomena, BEM does not face issues
in capturing the others.

As discussed earlier, due to the hyperstability issue, BEM may
converge to the unstable equilibrium following the fourth category of
instability. This in turn can deviate the cascade propagation path from
ground truth. Our goals are to identify the earliest tier of onset of such
instability, and execute appropriate protective actions that will be taken in
the ground truth.
3.2.2. Predictor subprocess (b)
This subprocess shown in Fig. 3 runs after subprocess (a) ends.

It constitutes running multiple simulations and calculations that are
independent and thus parallelizable. The following steps are taken –

i. Solving independent IVPs for short duration: As subprocess (a) spits
out [𝑡𝑖 ∶ 𝑥𝑖, 𝑉𝑖] data, we solve IVPs with initial values (𝑥𝑖, 𝑉𝑖)
that can be run in the 𝑖th parallel processor using variable-step
BEM. The simulation for the 𝑖th independent IVP is stopped
if the speed variation of machines in a predetermined window
length is below a certain threshold. As shown in Fig. 3, 𝑡𝑑,𝑖 is the
time elapsed since the beginning of such a simulation when this
stopping criterion is met. In this period, we do not consider any
event including relay actions.

ii. Calculate system matrix for model linearized around post-event equi-
librium: Solving variable-step BEM within each parallel processor
allows the trajectories to reach the post-event equilibrium –
more critical, the post-event unstable equilibrium point due to
BEM’s stiff-decay and hyperstability properties. We calculate
the system matrix (𝐴 matrix) of the model linearized around this
equilibrium as a byproduct of BEM-based simulation using the
elements of the Jacobian matrix as follows

𝐴 = 𝑃11 + 𝑃12𝑃−1
22 𝑃21 (14)

where,

𝑃11 =
1
𝛥𝑡 (𝐼 − 𝐽11); 𝑃12 = − 1

𝛥𝑡𝐽12;
𝑃21 = −𝐽21; 𝑃22 = 𝐽22

(15)

where, 𝐼 denotes the identity matrix and 𝛥𝑡 is the time step at
the end of duration 𝑡𝑑𝑖.

iii. Eigendecomposition of 𝐴 matrix: Eigendecomposition of 𝐴 matrix
is performed to detect oscillatory instability. For large systems,
one can use selective unstable eigenvalue and corresponding
right eigenvector calculations using the 𝑆-method [24] or refer
to relatively recent works on this topic [25,26]. The earliest
event and corresponding time instant, say 𝑡𝑓 is identified at
which the instability occurs.

3.2.3. Corrector subprocess (c)
If any oscillatory instability is detected, its origin can be found from

participation factors [10]. Assuming the typical case of instability from
electromechanical modes, we find the machine or groups of machines
participating in these modes using their speed modeshapes calculated
in subprocess (b). We schedule functional implementation of the pre-
determined protective action (e.g., out-of-step generator tripping or SPS
action) that will take place following 𝑡 = 𝑡𝑓 in the ground truth after a

designed delay.
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3.2.4. Restart subprocess (a)
As shown in Fig. 3, with the knowledge of pre-determined protec-

tion action to be taken, we re-initiate the solution of IVPs at 𝑡 = 𝑡𝑓 with
initial states 𝑥𝑓 , 𝑉𝑓 and perform protection actions after a pre-defined
delay and continue solving the subsequent IVPs.

The above steps will be repeated until no instability is detected in
the predictor subprocess.

In summary, in absence of oscillatory instability during cascading
failure, the Predictor–Corrector (PC) subprocesses do not lead to any
further protection actions. In presence of oscillatory instability BEM
leads to wrong results, as it fails to capture such instabilities due to
hyperstability issue. In this case, PC acts to detect such instabilities and
takes protection actions that should have taken place in ground truth.
This corrects the cascade propagation path.

3.3. Discussion on computational efficiency of BEM-PC

In this Section, we present a brief qualitative discussion on the
computational efficiency of BEM-PC compared to TM using logical
arguments. To this end, first we discuss why it is difficult to analytically
compare the computational complexity of BEM-PC against TM.

In both TM and BEM-PC the Newton iterations for each time instant
like 𝑡𝑛+1 involve inversion of the Jacobian matrix, which is sparse. The
major portion of CPU time for each Newton iteration is related to Ja-
cobian matrix inversion. For both TM and BEM-PC methods, we use ‘∖’
or ‘mldivide’ command in Matlab [21] for solving (8) in the well-known
form of linear equation 𝐴𝑥 = 𝑏. In this case, Matlab automatically
utilizes Unsymmetric MultiFrontal PACKage with automatic reordering
(UMFPACK) [27], which can be identified using the ‘spparms’ com-
mand [28]. UMFPACK uses unsymmetric-pattern multi-frontal method
nd direct sparse LU factorization. When inverting the 𝑝 × 𝑝 dense
atrix, the order of complexity in such algorithms, e.g., recursive

lock LU algorithm is (𝑝3) [29]. For the sparse matrix inversion,
he complexity typically depends upon the number of nonzero entries,
ather than the matrix dimension. To the best of our knowledge, there is
o exact general expression describing the order of complexity  for sparse
atrix inversion using UMFPACK.

In the following, we investigate the computational complexity of the
ubprocesses in TM and BEM-PC, and difficulties in quantitative and
nalytical comparison of these methods.

1. Complexity analysis of TM: The cascading failure simulations
(similar to subprocess (a) in Fig. 3) is the only set of calculations
where TM is applied. TM involves Newton iterations for each
instance where the major portion of CPU time is spent in the
inversion of Jacobian matrix with size (𝑛+𝑚) × (𝑛+𝑚), where 𝑛
and 𝑚 are the length of the state vector consisting of individual
device states and the length of the vector of real and imaginary
components of bus voltages, respectively. UMFPACK is used for
Jacobian matrix inversion in each iteration of Newton’s method.

2. Complexity analysis of BEM-PC: According to Fig. 3, in BEM-PC,
the predictor–corrector (PC)-approach has to be performed in
addition to the cascading failure simulations in subprocess (a).
The predictor subprocess (b) is parallelizable and has three main
tasks:
(b1) Calculation of the post-event equilibrium,
(b2) Calculation of 𝐴 ∈ 𝑛×𝑛 matrix from (14), and
(b3) Eigendecomposition (i.e., calculation of eigenvalues and
modeshapes) of 𝐴 matrix.
Here is the list of subprocesses in BEM-PC that require inversion
of the Jacobian or the subjacobian 𝐽22:

• Subprocesses (a), (b1): UMFPACK is used in Newton iter-
ations for Jacobian matrix inversion of size (𝑛 + 𝑚) × (𝑛 +

𝑚).
• Subprocess (b2): During system matrix calculation, UMF-
PACK is used for inversion of the subjacobian 𝐽22 of size
𝑚 × 𝑚 in (14).

In addition, in subprocess (b3), we use the ‘eig ’ command in
Matlab, which has a degree of complexity (𝑛3).

3. Comparison of complexity in TM and BEM-PC: Difference between
efficiency of BEM-PC and TM comes from the ability to adopt
large time step-sizes in BEM-PC method. Although, subprocess
(b) containing (b1), (b2), and (b3), and subprocess (c) runs in
BEM-PC in addition to the routine cascading failure simulation
(subprocess (a)); since BEM-PC is able to converge to a compara-
tively large step size 𝛥𝑡 much sooner than TM, we see significant
speedup using BEM-PC w.r.t. TM.

4. Difficulties in quantitative comparison: Here we mention some of
the difficulties of quantitative comparison on the efficiency of
BEM-PC vs TM.

• Even if we assume that the CPU time of other arithmetic
operations in the Newton iterations compared with that
of matrix inversion is negligible, the order of complexity
 for the sparse matrix inversion in UMFPACK is not
quantifiable.

• The size of the Jacobian matrix in both TM and BEM-
PC and subjacobian 𝐽22 in BEM-PC are time variant from
one island to another during cascading failure. In addi-
tion, there is no predictable pattern for this change upon
different contingencies. Therefore, comparing the order of
complexities () of TM against BEM-PC is very difficult.

• Time step 𝛥𝑡 is continuously changing in both methods
that use different variable step size adaptation approaches,
with no predictable pattern either during cascading failure
simulations for a generic contingency, or under differ-
ent contingencies. Since 𝛥𝑡 determines how many times
Newton iterations are initiated, it is very difficult, if not
impossible to quantify overall complexity.

Since it is difficult to analytically quantify the computational
efficiency of BEM-PC against TM, we present a qualitative assessment
through logical arguments as follows–

1. Subprocess (a) in Fig. 3 runs with variable time algorithm (13),
which allows significantly larger step size 𝛥𝑡 compared to that
allowed in LTE-based variable step TM mentioned before. This
is possible due to the stiff-decay property of BEM as described in
3.1. As a result, this subprocess can run much faster than TM.
We have presented a statistical analysis of CPU time for running
this subprocess compared to TM in Section 5.3. In addition, we
have also shown variation of time-step 𝛥𝑡 for TM and BEM in a
typical case.

2. Subprocess (b1) can be performed extremely fast with large 𝛥𝑡.
In subprocess (b2), the 𝐴 matrix calculation is a by-product
and needs inversion of 𝐽22, which is a highly sparse matrix.
We leverage sparse computation for this, as described earlier.
Also, there are highly efficient routines that can be used for
eigendecomposition in subprocess (b3). Further, note that once
any unstable mode is found, 𝐴 matrix does not need to be
calculated for the remaining equilibria. We have demonstrated
statistical analysis of CPU time needed for these individual steps
in Section 5.3 without parallelization.

3. Subprocess (c) needs minimal computation as it is based on
lookup table for enacting SPS action.

4. Clearly, the computational efficiency of BEM relies on the fact
that for a typical power system, a relatively small fraction of cas-
cade simulations will lead to oscillatory instability, and therefore

needs to re-run subprocess (a).



S. Gharebaghi et al.

o
𝑉
a

c
l

c

i
s
2
s
f
p
p
m

4

f
a
i

i
p
d
a

We have performed exhaustive comparison between the proposed
method and TM through statistical analysis of CPU time needed for
different subprocesses within BEM-PC in Section 5.3, which support
the above-mentioned arguments. In addition, a comparison with par-
titioned approach with fixed time-step-based explicit integration leads
to similar conclusions.

Remarks:

1. At a fundamental level, the proposed approach will be able to
speed up any transient stability simulation of power systems
with accurate end results. However, due to short-term nature of
typical transient stability simulations the speed gain would be
rather limited.

2. In contrast, cascading failure simulations may run for a much
longer time, lead to formation of multiple islands, and show
response across different time-scales throughout the process.
BEM can run with a larger integration time-step than TM during
most of the simulation period, which makes it ideally suited for
longer term simulations. This argument becomes even more rel-
evant since the proposed BEM-PC approach requires additional
computations due to the prediction and the correction steps.

4. Modeling and adaptive COI-frame-based approach

In this section, first we describe the models of power system com-
ponents (e.g., generators and transmission lines) and relays used for
protection, which determine the DAEs to be solved by both TM and
BEM-PC. Next, we propose an adaptive COI-frame-based approach for
faster convergence of Newton iterations in (8), which is used for
both TM and BEM-PC. Therefore, adaptive COI frame is used when
subprocesses (a) and (b) of BEM-PC in Fig. 3 solve the DAEs using BEM.

4.1. Component and relay action models

We consider a 4th-order synchronous generator model (states 𝐸′
𝑞 ,

𝐸′
𝑑 , 𝛿, 𝛥𝜔) with a first-order governor and static exciter models [11].

Both static constant power and dynamic loads in the form of syn-
chronous condensers were considered. The synchronous condensers
have similar models as generators, except that they do not have gover-
nors.

We have considered certain relay actions in our model. For example,
undervoltage load shedding (UVLS) relays are associated with indi-
vidual buses connected to static loads, measuring an average voltage
magnitude in a window of length 𝑇 𝑈𝑉 𝐿𝑆

𝑤 s. The relay trips 𝜆 fraction
f load if the average voltage magnitude of bus stays below threshold
𝑡ℎ for 𝑇 𝑈𝑉 𝐿𝑆

𝑡𝑝 s. The maximum number of times the UVLS relays are
llowed to shed a specific load is 𝐾𝑠ℎ𝑒𝑑

𝑚𝑎𝑥 .
The overcurrent (OC) relays measure an average magnitude of

urrent flow in the lines in a 𝑇𝑂𝐶
𝑤 s window. The trip delay for an over-

oaded line is 𝑇 𝑙𝑖𝑛𝑒
𝑡𝑝 = 0.14

( |𝐼|𝐼𝑐
)0.02−1

where, |𝐼|, and 𝐼𝑐 are average current

flow in the present window and line heating limit, respectively. The
window for OC relays is updated once in every second. Due to probable
large amplitude oscillations in the line flows immediately following an
event, OC relays use the latest pre-event trip delays till 1 s following
the event and then starts updating it. In addition, generator out-of-step
relay action trips a machine with non-oscillatory instability. We have
considered a specific type of pre-designed SPS action on oscillatory
instability involving multiple machines as described in Section 5.2. For
both TM and BEM-PC, if the time remaining till the earliest scheduled
trip instant by relays, 𝛥𝑡𝑟𝑒𝑙𝑎𝑦𝑡𝑟𝑖𝑝 is less than 𝛥𝑡𝑛+1 suggested by variable-step
algorithms, we consider 𝛥𝑡𝑛+1 = 𝛥𝑡𝑟𝑒𝑙𝑎𝑦𝑡𝑟𝑖𝑝 .

Remarks on Modeling:
1. Both BEM-PC and TM solve IVPs of the same DAEs, but the former
can reach the post-disturbance equilibrium faster. This is possible be-

cause BEM-PC has stiff decay property that enables it to use a variable
Fig. 4. Three different reference frames.

Fig. 5. Island formation during cascading failure: superscripts 𝑝 for parent, 𝑐𝑖 for 𝑖th
hild.

ntegration time-step with a larger step-size than TM during most of the
imulation period.
. In certain cases the cascading process may include mid/long term
tability issues involving aspects like boiler dynamics and long-term
requency instability. This however can easily be integrated in our
roposed framework, and is not a limitation. Due to its stiff-decay
roperty, BEM is ideally suited for longer term simulations and gives
ore benefit.

.2. Adaptive COI-frame-based approach

In both TM and BEM-PC approaches, instead of network reference
rame (𝑅 − 𝐼 frame) rotating at synchronous speed 𝜔𝑠, we project
ll phasors of an island on the COI frame (𝑑𝑐𝑜𝑖 − 𝑞𝑐𝑜𝑖) [10,11] rotat-
ng at 𝜔𝑐𝑜𝑖 = 1

𝐻𝑇

∑

𝑖∈𝑀 𝐻 𝑖𝜔𝑖, where 𝜔𝑖 and 𝐻𝑖 are the rotor speed
and inertia constant of the 𝑖th machine, 𝐻𝑇 =

∑

𝑖∈𝑀 𝐻 𝑖, and 𝑀 is
the set of indices indicating machine numbers in the corresponding
island. Fig. 4 shows the terminal voltage phasor of the 𝑖th machine
projected on different reference frames including the machine’s own
𝑑 − 𝑞 frame. The use of COI frame leads to rotor angle 𝜃𝑖 = 𝛿𝑖 − 𝛿𝑐𝑜𝑖
(where, 𝛿𝑐𝑜𝑖 =

1
𝐻𝑇

∑

𝑖∈𝑀 𝐻𝑖𝛿𝑖), which is constant in steady state under
off-nominal frequency. This helps in efficient convergence of Newton
iterations in (8), which is common knowledge. What is challenging
however, is adapting this framework for a cascading scenario that leads
to formation of multiple children from a parent island, see Fig. 5.

Challenge during formation of multiple islands: Let 𝑡 = 𝑡𝑛 be the last
nstant when the parent island was intact and 𝑡 = 𝑡𝑛+1 be the first
ost-islanding instant forming children as in Fig. 5. We need to use
ynamic states 𝑥𝑛 to predict 𝑥𝑛+1 for both TM (4) and BEM-PC (10),
nd in addition 𝑉𝑛 is required for TM. Since 𝑀𝑝 ≠ 𝑀𝑐𝑖∀𝑖, see Fig. 5, the

converged 𝑥𝑛 values corresponding to the pre-islanding instant cannot
be used. To be more specific, the challenge comes from the fact that

unlike the 𝑅 − 𝐼 frame which can be applied for any island, the COI
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frames are locally applicable to individual islands (Fig. 5). To solve this
problem, we propose an adaptive COI frame-based approach, which is
described next.

Proposed approach: We perform the following steps to calculate
𝑥𝑇𝑛+1 𝑉 𝑇

𝑛+1

]𝑇
within any child island #𝑐𝑖 –

Step (I): Since 𝑅−𝐼 frame is universal, we calculate 𝛿𝑛, 𝛥𝜔𝑛 ∈ R|𝑀𝑐𝑖|

s

𝛿𝑛 = 𝜃𝑛 + 𝛿𝑝𝐶𝑂𝐼_𝑛; 𝛥𝜔𝑛 = 𝛥�̄�𝑛 + 𝛥𝜔𝑝
𝐶𝑂𝐼_𝑛 (16)

here, 𝜃𝑛, 𝛥�̄�𝑛 ∈ R|𝑀𝑐𝑖| are rotor angle and speed deviation vectors in
sland #𝑐𝑖 w.r.t. the parent’s COI frame.

Step (II): This is the step where we adaptively change the COI frames
rom parent to child for each island. To that end we update 𝜃𝑛, 𝛥�̄�𝑛 ∈
|𝑀𝑐𝑖| from the parent’s COI frame to the COI frame of island #𝑐𝑖 (Fig. 5)
s

𝜃𝑐𝑖𝑛 = 𝛿𝑛 − 𝛿𝑐𝑖𝐶𝑂𝐼_𝑛; 𝛥�̄�𝑐𝑖
𝑛 = 𝛥𝜔𝑛 − 𝛥𝜔𝑐𝑖

𝐶𝑂𝐼_𝑛 (17)

here, in (17), 𝛿𝑐𝑖𝐶𝑂𝐼_𝑛 = 1
𝐻𝑇 ,𝑐𝑖

∑

𝑖∈𝑀𝑐𝑖
𝐻𝑖𝛿𝑖𝑛 and 𝛥𝜔𝑐𝑖

𝐶𝑂𝐼_𝑛 = 1
𝐻𝑇 ,𝑐𝑖

∑

𝑖∈𝑀𝑐𝑖

𝑖𝛥𝜔𝑖𝑛 . Note that the other machine states, exciter states, and governor
tates are not changed. The device states along with 𝛿𝑐𝑖𝐶𝑂𝐼_𝑛 and 𝛥𝜔𝑐𝑖

𝐶𝑂𝐼_𝑛
onstitute the updated state vector 𝑥𝑛 ∈ R6|𝑀𝑐𝑖|+2 for island #𝑐𝑖.

Step (III): We update 𝑉𝑛 within island #𝑐𝑖 by iteratively solving (5)
or 𝑡 = 𝑡𝑛 with updated states 𝑥𝑛 from Step (II). To that end, we update
𝑁 if needed and make use of the 𝐽22 sub-matrix of the Jacobian in (9).

Step (IV): In the final step, we use updated 𝑥𝑛 and 𝑉𝑛 as the

nitial guess for 𝑡 = 𝑡𝑛+1, i.e., we use
[

(

𝑥0𝑛+1
)𝑇 (

𝑉 0
𝑛+1

)𝑇
]𝑇

=
[

(

𝑥𝑛
)𝑇 (

𝑉𝑛
)𝑇

]𝑇
. We iteratively solve (8) to find

[

𝑥𝑇𝑛+1 𝑉 𝑇
𝑛+1

]𝑇

n island #𝑐𝑖.
Note that steps (II) and (III) constitute a sequential approach within

he simultaneous solution process. For 𝑡 > 𝑡𝑛+1, the adaptive COI-
rame based approach is identical with standard COI-based approach in
he island’s own COI frame until it further breaks into multiple islands.

.3. Comparison of proposed adaptive COI frame-based approach with
etwork (R-I) frame-based approach

To demonstrate the advantage of the proposed adaptive COI frame-
ased approach and explain the reason behind it in more detail, we
ontrast the cascading failure simulation results of TM with adaptive
OI reference frame against TM with network (R-I) reference frame. In
his regard, we investigate a contingency in IEEE 118-bus system where
ascade is triggered with 2 node outage at 𝑡 = 3 s. Figs. 6 and 7 compare
he time-domain cascading failure simulation results obtained using
hese two reference frames. In Fig. 6, left subplots, (a) and (b), illustrate
ynamic simulations with R-I reference frame and right subplots, (c)
nd (d), are for the simulations with adaptive COI reference frame. In
his figure, 𝜔 shows machine speed, and 𝛿 and 𝜃 denote rotor angles of
achines in R-I frame, and adaptive COI frame, respectively. To avoid

lutter in Fig. 6, we plot machine speeds and rotor angles of only two
enerators (𝐺5 and 𝐺53) among all 54 machines in IEEE 118-bus system.
n addition, Fig. 7 plots real and imaginary terms of voltages as well
s voltage magnitudes in two selected buses in network R-I reference
rame (left subplots, 𝐸𝑅, 𝐸𝐼 , and |𝐸|𝑅𝐼 ), and adaptive COI frame (right

subplots, 𝐸𝑐𝑜𝑖
𝑑 , 𝐸𝑐𝑜𝑖

𝑞 , and |𝐸|

𝑐𝑜𝑖).
The subplot (a) in Fig. 6 shows that the system settles at a new

frequency greater than the nominal frequency 60 Hz, inherently because
of primary frequency response in the post-disturbance situation. This
makes rotor angles in the R-I frame to increase with time (subplot (b)
in Fig. 6). In addition, as it is shown in the subplots (a), and (b) of Fig. 7,
real and imaginary terms of nodal voltages oscillate with time. On the
other hand, simulation based on adaptive COI frame in Fig. 6 results
in time-invariant steady-state for rotor angles (subplot (d) in Fig. 6),
and for real and imaginary terms of bus voltages w.r.t. adaptive COI
Fig. 6. Selective machine speeds and rotor angles in two different reference frames.
Left: Real-Imaginary reference frame. Right: adaptive COI-reference frame. For COI
frame 𝜔 is calculated as 𝜔 = �̄� + 𝜔𝑐𝑜𝑖, where �̄� and 𝜔𝑐𝑜𝑖 denote the machine speed
w.r.t. COI frame and speed of COI reference frame, respectively.

Fig. 7. Real and imaginary terms of nodal voltages and voltage magnitudes of
representative buses in two different reference frames. Left: Real-Imaginary reference
frame. Right: adaptive COI-reference frame.

frame (subplots (d), and (e) in Fig. 7). Fig. 7 shows that magnitudes of
voltages are identical for both R-I and adaptive COI reference frames.

Now, let us explain the implication of these observations on the
Newton iterations as in (8). Newton iterations for instant 𝑛 + 1 starts
with an initial guess for states and algebraic variables (𝑥𝑛+10 = 2𝑥𝑛−𝑥𝑛−1,
and 𝑉 𝑛+1

0 = (𝑉𝑛)2

𝑉𝑛−1
). The more precise the initial guess, the higher is the

possibility of faster convergence of Newton iterations. Based on Figs. 6
and 7, the variables to be calculated using Newton iterations are time-
invariant under steady-state when adaptive COI-reference frame is applied
as opposed to the R-I frame. This leads to a more precise initial guess for
Newton’s method and a faster convergence of iterations. Moreover, this
time-invariance allows choice of larger integration time-steps 𝛥𝑡 without
sacrificing accuracy of the initial guess.

To illustrate this, Fig. 8 compares the cumulative number of Newton
iterations and time step 𝛥𝑡 of main island for dynamic simulations with
adaptive COI and R-I reference frames. This figure clearly demonstrates
that the simulation with adaptive COI reference frame demands much
less number of Newton iterations and results in using larger time step
size 𝛥𝑡. The TM simulation with adaptive COI reference frame is 3.3
times faster than the TM simulation with R-I reference frame. Both
simulations produce identical end results for cascade.

Therefore, adaptive COI reference frame improves the convergence of
Newton iterations and allows larger time step sizes for simulations. Although
we did the comparison using TM, the same conclusion is expected for

BEM-PC.
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Fig. 8. Top: Cumulative number of Newton iterations over time for TM based on
adaptive COI-reference frame and network (R-I)-reference frame. Bottom: Adaptation
of integration time step 𝛥𝑡 in TM method based on adaptive COI-reference frame, and
etwork (R-I)-reference frame. The TM simulation with adaptive COI frame is 3.3 times
aster than the TM simulation with R-I frame.

. Case studies

The IEEE 118-bus system and the Polish network during winter
999–2000 peak condition [22] are studied here to contrast our pro-
osed approach (called BEM-PC hereafter) and the traditional approach
called TM from now). The IEEE 68-bus system is also studied, which
ill be introduced later. The IEEE 118-bus system consists of 118 buses,
4 machines, and 186 branches. The Polish system is a large-scale net-
ork with 2383 buses, 327 machines, and 2896 lines. We synthetically
enerate dynamic data, for these models. For the IEEE 118-bus and
he Polish systems, cascades are triggered with 2 and 3 initial node
utages, respectively, which are sufficient to create long term cascading
equences in these networks. For each system, 500 Monte-Carlo runs are
erformed with random selection of initial node outages. For BEM-PC
e have used 𝛥𝑡𝑚𝑖𝑛 = 0.02 s, 𝛥𝑡𝑚𝑎𝑥 = 0.4 s, 𝑘 = 6, 𝑟 = 7, 𝜖 = 10−4, and
aximum allowable Newton iterations is 10. For relays, 𝑇 𝑈𝑉 𝐿𝑆

𝑤 = 3 s,
𝑈𝑉 𝐿𝑆
𝑡𝑝 = 3 s, 𝜆 = 25 %, 𝑣𝑡ℎ = 0.8645 pu for IEEE 118-bus system, and
.75 pu for Polish system, 𝐾𝑠ℎ𝑒𝑑

𝑚𝑎𝑥 = 5, and 𝑇𝑂𝐶
𝑤 = 1 s have been used.

Note that the following results implement the Predictor subpro-
esses (b) of BEM-PC in Fig. 3 in a serial fashion. Hence the speedup
btained is a conservative estimate of what can be obtained with paralleliza-
ion of the Predictor. For IEEE 118-bus system, the simulations were run
n AMD Ryzen 7 3800X CPU with 32 GB RAM and for Polish system 4
ervers with 2.2 GHz Intel Xeon Processor, 24 CPU/server, and 128 GB
AM in PSU’s ROAR facility [30] were used.

.1. Monte-Carlo simulation

.1.1. IEEE 118-bus system
Figs. 9 and 10 compare how often the total demand loss and line

utages at the end of cascade are above a particular level for TM
nd BEM-PC. The analysis includes initial node outages. The top two
oomed subplots show that there are small differences between BEM-
C and TM for cases with (15%–25%) demand loss and cases with
44 − 60) line outages. Nonetheless, the results indicate a very close
atch between the end results of cascade.

Table 1 compares the accuracy of BEM-PC with respect to TM and
hows that the average error at the end of cascade in states (connected
s disconnected) of buses, machines, and lines which are small fractions
f the corresponding total numbers. Similarly, the central tendency
easures of maximum errors in voltage magnitudes, angles, and fre-

uency are very small. Although there are some outliers causing an
ncrease in the average error values, for almost all of the cases BEM-PC
s able to replicate the exact end-result of TM.

The 𝑅 values in the table show path agreement measure [3] be-
ween BEM-PC and TM based on dependent branch outages, where both
 T
Fig. 9. Fraction of cases with % demand loss ≥ 𝑥 at the end of cascade: IEEE 118-bus
system.

Fig. 10. Fraction of cases with line outage ≥ 𝑥 at the end of cascade: IEEE 118-bus
system.

Table 1
(a) End of cascade error, (b) path agreement measure, and (c) run time in TM w.r.t.
BEM-PC: IEEE 118-bus system.

Mean Min Max Median

Error in buses 0.6460 0 77 0
State of machines 0.2940 0 36 0

lines 0.8960 0 114 0

Maximum |𝑣|,pu 0.0024 0 0.0741 7.9𝑒−7
Error in ∠𝑣,deg. 0.2874 0 14.5731 1.0𝑒−4

𝑓,Hz 0.0442 0 2.3127 1.1𝑒−6

R 0.9911 0.25 1 1

Runtime ratio 9.9575 0.3403 60.4361 9.0554

models are subject to the same set of initial outages 𝐶 = {𝑐1, 𝑐2,…}. If
contingency 𝑐𝑖 results in the set 𝐴𝑖 of dependent line outages in the first
model and the set 𝐵𝑖 of dependent line outages in the second model,
then R is defined as follows [3],

𝑅 = 1
|𝐶|

|𝐶|

∑

𝑖=1

|𝐴𝑖 ∩ 𝐵𝑖|

|𝐴𝑖 ∪ 𝐵𝑖|
(18)

where, 𝑅 = 1 indicates a complete match between cascade paths from
two models following all contingencies.

Based on the central tendency measures of 𝑅 from Table 1 and its
tandard deviation being 0.05916, we conclude that the models have
high agreement in the cascade path. In addition to the high accuracy

f BEM-PC in most of Monte-Carlo runs, on average it is approximately 10
imes faster than TM.

.1.2. Polish system
As before, Figs. 11 and 12 compare how often the total demand loss

nd line outages at the end of cascade are above a particular level for
M and BEM-PC — a very close match is observed.
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Fig. 11. Fraction of cases with % demand loss ≥ 𝑥 at the end of cascade: Polish system.

Fig. 12. Fraction of cases with line outage ≥ 𝑥 at the end of cascade: Polish system.

Table 2
(a) End of cascade error, (b) path agreement measure, and (c) run time in TM w.r.t.
BEM-PC: Polish System.

Mean Min Max Median

Error in buses 0.1220 0 8 0
State of machines 0.0620 0 3 0

lines 0.1600 0 7 0

Maximum |𝑣|,pu 0.0008 0 0.0360 2.1𝑒−5
Error in ∠𝑣,deg. 0.1441 0 10.1075 4.0𝑒−4

𝑓,Hz 0.0165 0 0.2414 8.4𝑒−5

R 0.9922 0.75 1 1

Runtime ratio 34.6097 1.1593 430.3984 24.7959

Table 2 compares various error measures at the end of cascade for
EM-PC with respect to TM. These indicate that for almost all of the
ases, BEM-PC is able to accurately mimic the end results of cascade
s in TM. The central tendency measures of 𝑅 from Table 2 and its

standard deviation equaling 0.03230 demonstrate that the models have
a high degree of agreement in the cascade path. Finally, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜
indicates that on average the proposed model is 34.6 times faster than the
standard model.

Fig. 13 provides comparison between BEM-PC and TM on correla-
tion of various end-of-cascade measures like demand loss vs number
of outages and demand loss vs cascade sequence time (time between
initial and final events). Out of 500 Monte-Carlo runs with 3 initial node
outages, 41 cases are resilient cases and did not lead to any dependent
events after initial node outages, whereas 118 cases did not converge
and were considered as collapsed cases. In both panels in this figure,
cases without dependent events and cases with complete collapse are
disregarded. Following are the observations.

• Both plots indicate that the correlations among the two pairs of
variables in BEM-PC closely match that of TM. However, there
are a few cases in which these two approaches produce slightly
different results.

• The density curves reveal almost identical distribution patterns
for TM and BEM-PC for both sets of values on 𝑥 and 𝑦 axes.

• The right panel indicates a considerable number of cases have
cascade sequence time more than 100 s.

For a sample case in the Polish system, time-domain plots repre-
senting the number of branch outages and demand loss against time
are shown in Fig. 14. The nodes in the figure indicate the instants of
outage/demand loss. The plots reveal that BEM-PC is following the
exact cascade path as in the ground truth. Also, it is worth noting
that the proposed simulation approach is 28 times faster than TM in
this case. As described earlier, initially (at 𝑡 = 3 s) 3 random nodes
are disconnected to trigger cascade. These initial node outages are
therefore not dependent outages, i.e., they do not represent the severity
of cascade. In Fig. 14, the initial node outage caused disconnection of
10 lines at 𝑡 = 3 s in addition to significant demand loss.

5.2. Hyperstability – A challenge for BEM and performance of predictor–
corrector approach

In this section, accuracy of our proposed BEM-PC approach is tested
against different cases with oscillatory instability in both IEEE 118-bus
system and the Polish network. Since the 118-bus and the Polish system
does not exhibit oscillatory instability under nominal setting, we create
two oscillatory instability situations in the system by making damping
coefficient negative in some machines, first at the beginning of cascade
(case #1), and in a separate case somewhere in the middle of cascade
(case #2).

The SPS action is designed to trip two unstable machines with
the highest amplitudes of oscillations upon detection of oscillatory
instability. In TM this takes place through explicit SPS action after 7.5
s and 4.5 s, respectively, in IEEE 118-bus and Polish system. However,
in BEM-PC, a functional implementation is achieved by identifying the
unstable mode and participating machines using eigendecomposition
of the 𝐴 matrix for post-event equilibrium as shown in Fig. 3. Then,
the suitable predetermined protection action is taken by SPS. Note that
other type of SPS actions can also be taken like tripping certain lines
to disconnect areas oscillating against each other.
5.2.1. IEEE 118-bus system

We make the damping coefficients of generators 𝐺39 and 𝐺51
negative. For case #2, we introduce the negative values at the start
of third tier in the middle of cascade. Fig. 15 shows rotor speeds of
two representative machines in case #1 for TM, BEM-PC, and BEM
without PC-approach (BEM). The top and bottom subplots show that
BEM leads to only one tier of cascade due to hyperstability issue. The
top panels show that BEM-PC has captured the oscillatory instability
in the system and is able to tackle the hyperstability issue of BEM
— note slight difference in tripping times in BEM-PC due to the OC
relays’ window-based averaging described in Section 4. The estimated
unstable modes by BEM-PC are 0.1239 ± 𝑗2.4889 and 0.1121 ± 𝑗2.0531
and the corresponding estimated modeshapes are shown in Fig. 16.
Based on the modeshapes, 𝐺51 and 𝐺39 are tripped after a 7.5 s delay.
Eventually, TM and BEM-PC lead to 25 tiers of cascade (not shown
ere).

Tables 3 and 4 compare path agreement and various end-of-cascade
easures for these three models in cases #1 and #2. Clearly, BEM-PC

solved the hyperstability issue of BEM, had identical cascade propaga-
tion path, and replicated the end results of cascade in the ground truth
in much shorter time. As expected, BEM without PC approach shows
significantly different results than the ground truth.
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Fig. 13. Left: Demand loss vs number of branch and machine outages. Right: Demand loss vs cascade sequence time for Polish system. The density curves of the 𝑥 and 𝑦 variables
are shown on the bottom and left of each subplot, respectively.
Fig. 14. Timeline of number of branch outages and demand loss during cascade: Polish
system.

Fig. 15. IEEE 118-bus system case #1: Variation of speeds of 𝐺39 and 𝐺52 with
oscillatory instability from beginning of cascade.

Table 3
End-of-cascade comparison: IEEE 118-bus system.

Demand Lines Mach. Cascade Runtime
loss, % out out time, s ratio

Case #1
TM 83.41 157 44 146.93 7.72
BEM-PC 83.41 157 44 146.23 1
BEM 1.06 4 0 3 0.09

Case #2
TM 7.01 31 6 337.11 5.29
BEM-PC 7.01 31 6 336.78 1
BEM 1.88 9 0 69.88 0.27

5.2.2. Polish system
Generators 𝐺286 and 𝐺287 are selected to create the oscillatory

instability in the system. Fig. 17 shows rotor speed variation in two
selected machines in the system for case #2. While BEM without PC
is not able to capture the oscillatory instability and diverges from the
ground truth, this figure along with Tables 5 and 6 reveal that in
both cases, BEM-PC attain the identical end results of cascade as TM.
As an example, for case #2, BEM-PC estimates the unstable modes
Fig. 16. Modeshapes of generator speeds estimated by BEM-PC corresponding to the
unstable modes for case #1 in IEEE 118-bus and for case #2 in Polish system under
the predictor subprocess (b) in Fig. 3.

0.4306±𝑗9.7845 and 0.4464±𝑗9.3910, and corresponding modeshapes in
Fig. 16, which leads to trippings of 𝐺286 and 𝐺287 after a 4.5 s delay
by the SPS. Finally, Fig. 18 represents branch outages and demand loss
against the cascade progression time for case #2. It reveals that cascade
in BEM is stopping after 4 tiers around 43 s. Although, because of very
close trip delays of two overloaded lines around 𝑡 = 45 s, these lines are
tripped together in one tier of cascade in BEM-PC, and in two tiers in
TM, they follow identical cascade propagation paths (see, R in Table 6)
and produce the same results at the end-point of cascade.

For further judging the efficacy of the proposed BEM-PC approach
in handling the hyperstability issue, it would be ideal to study a system
that naturally exhibits oscillatory instability as the cascade propagates.
To that end, we have also considered the IEEE 68-bus New England-
New York (NE-NY) benchmark test system [31] that is widely used for
studying oscillatory instability problems.

5.2.3. IEEE 68-bus NE-NY system
The system has 5 areas, 87 lines, and 16 generators – a detailed

description can be found in [31]. The grid exhibits multiple oscillatory
modes among which the mode with eigenvalues −0.0804 ± 2.4474𝑗 has
the least damping ratio. The modeshapes of generator speeds for this
mode is shown in Fig. 26(a). We run 500 Monte Carlo (MC) simulations
with two random initial line outages in AMD Ryzen 7 3800X CPU
with 32 GB RAM. Unlike the IEEE 118-bus and Polish systems, we use
𝑇𝑂𝐶
𝑤 = 4 s, since this system exhibits low-frequency interarea modes.

As shown in Table 7, BEM-PC encounters hyperstability issues in
16.4% of cases. The modeshapes of the generator speeds for the un-
stable mode with eigenvalue 0.0061 ± 2.3740𝑗 is estimated by BEM-PC,
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Table 4
End-of-cascade and path agreement comparison: IEEE 118-bus System.

Case TM vs Error in state of Max error in R

buses mach. lines |𝑣|, 𝑝𝑢 ∠𝑣, 𝑑𝑒𝑔. 𝑓 ,𝐻𝑧

#1 BEM-PC 0 0 0 7.8𝑒−7 2𝑒−4 1.8𝑒−4 1
BEM 93 44 153 9.7𝑒−2 13.58 4.09 0

#2 BEM-PC 0 0 0 5.8𝑒−6 6.4𝑒−3 5.3𝑒−5 1
BEM 6 6 22 9.7𝑒−2 15.63 1.4𝑒−4 0.19
Table 5
End-of-cascade comparison: Polish system.

Demand Lines Mach. Cascade Runtime
loss, % out out time, s ratio

Case #1
TM 0.96 34 4 90.84 25.74
BEM-PC 0.96 34 4 90.74 1
BEM 0.22 9 1 11.07 0.15

Case #2
TM 0.92 35 3 115.66 40.37
BEM-PC 0.92 35 3 115.96 1
BEM 0.18 10 0 43.69 0.16

Table 6
End-of-cascade and path agreement comparison: Polish system.

Case TM vs Error in state of Max error in R

buses mach. lines |𝑣|, 𝑝𝑢 ∠𝑣, 𝑑𝑒𝑔. 𝑓 ,𝐻𝑧

#1 BEM-PC 0 0 0 3.2𝑒−5 1.2𝑒−3 7.3𝑒−5 1
BEM 15 3 25 5.7𝑒−2 4.15 9.7𝑒−4 0.11

#2 BEM-PC 0 0 0 3.3𝑒−5 1.2𝑒−3 7.6𝑒−5 1
BEM 15 3 25 5.7𝑒−2 4.19 1.1𝑒−3 0.14

Fig. 17. Polish system case #2: Variation of speeds of 𝐺286 and 𝐺290 with oscillatory
instability in the middle of cascade.

and is shown in Fig. 19(a). Clearly, the most poorly-damped mode
in the predisturbance condition has become unstable during cascade
propagation and generators 𝐺14–𝐺16 oscillate against the rest of the
enerators in this mode. Upon prediction of hyperstability, BEM-PC
erforms a corrective step by tripping line 41–42 after 5 s of the latest
vent using the predefined SPS action, see Fig. 19(b).

The fraction of cases where the demand loss and line outages at the
nd of cascade are above a threshold are compared in Fig. 20. We see a
ery close match between TM and BEM-PC. Table 8 shows breakdown
f errors in states of buses, machine, and lines at the end of cascade
f BEM-PC along with its path agreement measure 𝑅. It can be seen
hat the proposed approach is highly accurate in following the actual
ascade path, while achieving ≈ 20× speedup on an average, in spite of
aturally occurring hyperstability problem.

.3. Analysis of computational efficiency

In support of the logical arguments presented in Section 3.3, we
resent our analysis of computational efficiency of BEM-PC based on
imulation data. To that end, we performed rigorous data collection
Fig. 18. Timeline of number of branch outages and demand loss during cascade in the
oscillatory instability case #2: Polish system.

Fig. 19. Left: Modeshapes of generator speeds estimated by BEM-PC corresponding
to the unstable interarea mode for a typical case with hyperstability issue in NE-NY
system under the predictor subprocess (b) in Fig. 3. Right: One-line diagram of NE-NY
test system highlighting SPS action.

Table 7
Number of cases with/without hyperstability detection by BEM-PC
during cascade: NE-NY system.

# of cases with # of cases without
hyperstability hyperstability

Number 82 418
Percentage, % 16.4 83.6

relating individual subprocesses in Fig. 3. In addition to TM, we also
present performance comparison with the partitioned approach widely
used in production-grade softwares.

5.3.1. Performance comparison with TM
Statistical analysis of the overall CPU time comparison between

BEM-PC and TM was presented using the runtime ratio in Tables 1–
2. The box plots of this metric are also shown in Fig. 24. Although
the runtime ratio is a good measure of the overall computational
efficiency of BEM-PC, it is important to understand how the individual
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Fig. 20. Fraction of cases with % demand loss ≥ 𝑥 and line outage ≥ 𝑥 at the end of
cascade in NE-NY system: comparison between TM and BEM-PC.

Fig. 21. Adaptation of integration time step 𝛥𝑡 in TM and BEM-PC. Case (I): Top
ubplots. Case (II) Bottom subplots.

Fig. 22. Visualization of sparsity pattern of 𝐽22 in predisturbance condition with
dimension of 4766 × 4766, where 𝑛𝑧 shows number of nonzero elements. The matrix
is 99.86% sparse.

Fig. 23. Boxplots of runtimes of different subprocesses of BEM-PC as in Fig. 3
during 500 MC runs of Polish system. a: subprocess (a). b1: equilibrium calculation
n subprocess (b). b2: A matrix calculation from (14) in subprocess (b), and b3:
igendecomposition of A matrix in subprocess (b). Runtimes are expressed as a %
f total runtimes of BEM-PC (top) and TM (bottom).
 t
Table 8
(a) End of cascade error, (b) path agreement measure, and (c) run time in TM w.r.t.
BEM-PC: NE-NY system.

Mean Min Max Median

Error in buses 0.132 0 18 0
State of machines 0.032 0 5 0

lines 0.138 0 19 0

R 0.997 0.428 1 1

Runtime ratio 19.687 0.235 120.737 15.582

subprocesses in Fig. 3 contribute towards that. We choose Polish system
to demonstrate this due to the scalability challenge it poses. To this end,
first we choose two cases — Case (I): a case without hyperstability, and
Case (II): the hyperstability case #2 analyzed in the previous Section.
The analysis of BEM-PC subprocesses are performed below.
1. Subprocess (a): Fig. 21 shows the adaptation of integration time step
𝛥𝑡 in BEM-PC and TM while solving the cascading process leading to the
main surviving island. It can be seen that TM demands much shorter
time step whereas BEM-PC enjoys simulation with 𝛥𝑡𝑚𝑎𝑥 = 0.4 s for most
of the simulation period. It can be calculated from Table 9 that this
subprocess consumes ≈ 70% and ≈ 75% of BEM-PC’s overall CPU time
for Cases (I) and (II), respectively. These are however, merely ≈ 2% of
the TM’s runtime in both cases.
2. Subprocess (b): Table 9 also shows a breakdown of BEM-PC’s runtime
within subprocess (b) in Fig. 3. As mentioned in Section 3.3, this sub-
process can be segmented further into (b1), (b2), and (b3). Subprocess
(b1) is the most expensive among the three, and based on the runtimes
shown in Table 9, it uses ≈ 23% of BEM-PC’s overall CPU time for both
cases. Subprocess (b2) requires inversion of the submatrix 𝐽22, which is
very sparse. To get an idea, Fig. 22 shows the sparsity pattern of 𝐽22 in
pre-disturbance condition. The dimension of the matrix is 4766 × 4766,
and it is 99.86% sparse. It takes ≈ 2.16 s to form the corresponding
largest 𝐴 matrix in PSU’s ROAR computers [30] when sparse objects
are used in conjunction with Matlab’s most comprehensive inversion
routine [21]. The dimension of the 𝐴 matrix in this case is 1964 × 1964,
and it takes ≈ 2.5 s for its eigendecomposition in subprocess (b3).
Based on the results in Table 9, (b2) and (b3) consume ≈ 1.5–2% and
≈ 1.5–2.5% of total CPU time of BEM-PC, respectively. Note that the
ubprocess (c) is lookup table-based and consumes negligible CPU time.

After an in-depth analysis of two specific cases, statistical analysis
s performed to assess the computational burden of the subprocesses in
00 cases of Polish system. Fig. 23 shows the boxplots of these runtimes
xpressed as percentages of total runtimes of BEM-PC (top) and TM
bottom). The mean and median figures are specified in Table 10. The
ollowing conclusions can be drawn from these data –

1. Subprocess (a) consumes the most significant computational
burden followed by (b1). In comparison, both calculation of 𝐴
matrix and its eigendecomposition requires negligible CPU time.

2. Aided by the stiff-decay property, both of subprocesses (a) and
(b1) run significantly faster than TM due to their ability to use
larger integration step length 𝛥𝑡.

.3.2. Performance comparison with partitioned approach
As described in the Introduction section, production grade stability

rograms use the partitioned approach for dynamic simulation. For a
air comparison, we have performed cascading failure simulations using
he partitioned approach with 4th-order Runge–Kutta (R–K) method,
hich is a widely-used explicit numerical integration technique [10].
he simulations were run at a fixed time-step of 0.002 s. Both R–K and
M produces near-identical simulation results. Boxplots of normalized
untime of R–K w.r.t. BEM-PC are shown in Fig. 24. The following are

he key observations–
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Table 9
Runtime in seconds of different sub-processes in BEM-PC shown in Fig. 3. Case (I): generic case without hyperstability, and Case (II): with
hyperstability in Polish system.

Case BEM-PC TM

Round 1 Round 2 Total Total

a b1 b2 b3 a b1 b2 b3

I 829.3 276.5 25.2 28.5 0 0 0 0 1159.5 37615.2
II 440.2 103.9 8.1 8.3 1608.0 528.2 32.2 33.2 2762.1 111521.0

a: subprocess (a) b1: equilibrium calculation in subprocess (b) b2: A matrix calculation attained from (14) in subprocess (b) b3: eigen
decomposition in subprocess (b), see Fig. 3.
t
a

Table 10
Mean and median values of runtimes of different subprocesses of BEM-PC in Fig. 3 as
a % of total runtime of BEM-PC and TM in 500 MC runs for Polish system.

BEM subprocess

a b1 b2 b3

Mean BEM-PC 70.69 25.62 1.71 1.98
TM 3.51 1.98 0.08 0.09

Median BEM-PC 71.42 24.41 1.7 1.94
TM 2.82 0.87 0.06 0.07

Fig. 24. Boxplots of normalized runtime of TM and R–K w.r.t. BEM-PC for cascading
ailure in — Left: IEEE 118-bus system, and Right: Polish system.

Table 11
Number of cases with nonzero errors in demand loss and line outage at the end of
cascade comparing ground truth (TM) against classical and AC-QSS models: NE-NY
and Polish systems.

TM vs # of cases with error in

Demand loss Lines out

NE-NY Polish NE-NY Polish

TM classical 79 76 62 113
AC-QSS 297 296 322 342

1. For the relatively smaller IEEE 118-bus system, R–K is slightly
faster than the TM. However, the mean and median ratios of
runtime between R–K and BEM-PC from 500 MC runs are 7.72
and 6.91, respectively. For TM these numbers are 9.96 and 9.05,
respectively.

2. For the Polish system, R–K is slower than TM. The mean and
median ratios of runtime between R–K and BEM-PC from 393 MC
runs are 68.82 and 51.84, respectively. For TM, these numbers
corresponding to the same MC runs are 34.54 and 24.44, respec-
tively. Note that the remaining 107 cases of the 500 MC runs
could not be simulated using R–K method as those are running
beyond 60 hours.

learly, BEM-PC retains its advantage over traditional partitioned ap-
roach. This is in line with what we mentioned in point #5 of remarks

under Section 2.2.
Fig. 25. Fraction of cases with % demand loss ≥ 𝑥 and line outage ≥ 𝑥 at the end of
cascade in IEEE 118-bus system: (a), (b)- comparison between ground truth (TM) and
classical models. (c), (d)- comparison between ground truth (TM) and AC-QSS models.

Fig. 26. Modeshapes of generator speeds corresponding to the most poorly-damped
mode for 4th-order, and classical models of NE-NY system under the predisturbance
condition.

Fig. 27. Fraction of cases with % demand loss error ≥ 𝑥 and line outage error ≥ 𝑥 at
he end of cascade in NE-NY system: comparison between ground truth against classical
nd AC-QSS models for cases with nonzero errors in demand loss and line outage.
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5.4. Comparison with AC-QSS and classical models

In this section, we contrast the cascading failure simulation results
in the ground truth (that uses a 4th-order generator model solved using
TM) with the AC-QSS model [32] and dynamic model with classical
generator representation. Going forward, ‘error’ will imply difference
w.r.t. ground truth denoted as ‘TM.’

5.4.1. IEEE 118-bus system
Fig. 25 shows that both models demonstrate similarity with the

4th-order model, when cascading failure is less severe. However, as
the cascade leads to further line outages and load tripping, the AC-
QSS and the classical model start departing from the ground truth. For
this system, the AC-QSS model shows an optimistic result, while the
classical model presents a pessimistic result, when compared with the
ground truth.

5.4.2. IEEE 68-bus NE-NY system
We first look into the modal characteristics of the system before

initial outages. The modeshapes of generator speeds corresponding to
the most poorly-damped modes are shown in Fig. 26 for 4th-order syn-
chronous generator representation vs classical model representation.
Next, Table 11 shows the number of cases with nonzero error with
respect to ground truth in line outage and demand served at the end of
cascade when classical generator-based model and AC-QSS model are
used in NE-NY system. Finally, Fig. 27 quantifies the error in such cases.
The following are the key observations from Figs. 26, 27, and Table 11
–

• The modal characteristics of the 4th-order and classical model-
based systems are quite different. For the former, the most poorly-
damped mode is −0.0804 ± 2.4474𝑗, whereas for the latter, it
is −0.0718 ± 5.0125𝑗. In 4th-order model, generators 𝐺14 − 16
oscillate against those in NETS and NYPS for this mode, whereas
for the classical model, 𝐺15 oscillates against 𝐺14 and 𝐺16 for the
corresponding mode.

• Fig. 27 reveals that in the classical model among the cases in
Table 11 the mean demand loss error is higher than 40% and the
mean line outage error is more than 40. These errors are similar
for the AC-QSS model, but for a much larger number of cases, as
shown in Table 11.

.4.3. Polish system
Table 11 shows the number of cases with nonzero error with respect

o ground truth in line outage and demand served at the end of cascade
hen classical generator-based model and AC-QSS model are used in
olish system. Fig. 28 quantifies the error in such cases. In line with the
xpectations, the AC-QSS model shows higher error than the classical
odel.
. Conclusion and future work

A fast time-domain cascading failure simulation approach based on
mplicit Backward Euler method (BEM) with stiff decay property is
roposed in this work. To solve the hyperstability problem of BEM,
e proposed a parallelizable predictor–corrector (BEM-PC) approach

equiring eigendecomposition of the system matrix corresponding to
he linear model obtained around the post-event unstable equilibrium,
hich BEM converges to. The system matrix is obtained as a by-product
f BEM. The proposed BEM-PC approach is benchmarked in a serial
mplementation against the traditional Trapezoidal method (TM)-based
pproach. It has shown on an average ≈ 10× speedup in IEEE 118-bus
ystem, ≈ 20× speedup in IEEE 68-bus system, and ≈ 35× speedup in
he Polish grid based on 500 simulations in each system with random
ode outages while following exact cascade paths and end results as
n TM in most of the cases. It was also shown that BEM-PC retains
ts computational advantage with respect to partitioned approach us-
ng Runge–Kutta-based numerical integration method. Finally, it was
Fig. 28. Fraction of cases with % demand loss error ≥ 𝑥 and line outage error ≥ 𝑥 at
he end of cascade in Polish system: comparison between ground truth against classical
nd AC-QSS models for cases with nonzero errors in demand loss and line outage.

hown that AC-Quasi-Steady-State and classical generator model-based
epresentations can lead to different results when compared with a
etailed model with 4th-order generator and exciter dynamics. Our
ngoing and future work focuses on parallelization of BEM-PC, which
hould lead to further speedup.
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