
Host-based Flow Table Size Inference in
Multi-hop SDN

Tian Xie∗, Sanchal Thakkar∗, Ting He∗, Novella Bartolini†, Patrick McDaniel‡
∗Pennsylvania State University, University Park, PA, USA. Email: {tbx5027,sjt5721,tinghe}@psu.edu

†Sapienza University of Rome, Rome, Italy. Email: novella@di.uniroma1.it
‡ University of Wisconsin, Madison, WI, USA. Email: mcdaniel@cs.wisc.edu

Abstract—As a novel network paradigm, Software Defined
Networking (SDN) has greatly simplified network management,
but also introduced new vulnerabilities. One vulnerability of
particular interest is the flow table, a data structure in every
SDN-enabled switch that caches flow rules from the controller to
bridge the speed gap between the data plane and the control
plane. Prior works have shown that an adversary-controlled
host can accurately infer parameters of the flow table at its
directly-connected edge switch, which can then be used to launch
intelligent attacks. However, those solutions do not work for flow
tables at internal switches. In this work, we develop an algorithm
that can infer the different flow table sizes at internal switches
by measuring the Round Trip Times (RTTs) of a path traversing
these switches from one of its endpoints. A major challenge in this
problem is the lack of an inferable relationship between the RTTs
and the flow table hits/misses at the traversed switches. Our so-
lution addresses this challenge by experimentally identifying the
inferable information and designing an inference algorithm that
combines carefully designed probing sequences and statistical
tools to mitigate measurement noise and interference. The efficacy
of our solution is validated through experiments in Mininet.

Index Terms—software defined network, adversarial reconnais-
sance, flow table size inference.

I. INTRODUCTION

Software Defined Networking (SDN) has revolutionized the
way networks are constructed and managed. A key feature of
SDN is the separation of the control plane from the data plane,
which has resulted in greater communication flexibility and
easier network management. However, the increasing preva-
lence of SDN has raised security concerns, because although
SDN facilitates defense against traditional IP-network attacks,
it also introduces new vulnerabilities.

A particularly important vulnerability is the flow table, a
data structure in every SDN-enabled switch that caches flow
rules received from the controller. Flow tables are typically
small, holding only a few thousand rules, due to the high cost
and power consumption of the underlying storage medium.
A packet whose header does not match any of the existing
rules has to be handled by the controller, which slows down
the forwarding and imposes load on the control plane. This
vulnerability has been exploited to launch various flow table
overflow attacks [1], [2], [3], [4] and control plane saturation
attacks [5]. Apart from those, [6] introduces algorithms that
can explicitly deduce the size, the replacement policy, and the
state of a flow table from probes sent by a compromised host.

This work was supported by the National Science Foundation under award CNS-
1946022.

However, all these attacks target on edge switches directly
connected to adversary-controlled hosts.

In this work, we deepen the vulnerability analysis to internal
switches, by studying the possibility to infer the flow table
sizes of multiple switches traversed by a multi-hop path orig-
inating from an adversary-controlled host. Given the ability to
craft packets that can trigger new rule installation as shown
in [1], we develop an inference algorithm that uses the Round
Trip Times (RTTs) of specially-designed sequences of probes
to deduce information about the involved flow table sizes. This
capability will enable a host-based adversary to map out the
resource limitations along each candidate attack path and plan
more intelligent attacks similar to [6]. The focus of this work
is on inferring the flow table sizes; how to exploit or protect
this information is left to future work.

A. Related Work

General cache inference: As the flow table acts as a
cache of flow rules, flow table inference can be viewed as
a special case of general cache inference. There are, however,
few positive results for general caches. In [7], a procedure
was proposed to infer the cache replacement policy and input
parameters from observations of all the misses, which is not
applicable in our context as the adversary-controlled host can
only observe the results of its own packets. In [8], an algorithm
was proposed to infer the size of a Least Recently Used (LRU)
cache, but it did not consider the problem that the replacement
policy can be different and unknown.

Flow table inference: More results are available on flow
table inference, where the notably different communication
performance under flow table hit/miss has been used to infer
various characteristics of the target flow table, mostly in the
context of adversarial reconnaissance. For example, [9], [10],
[11] showed the feasibility of inferring the presence of certain
flow rules, [1] showed a probing scheme to infer the timeout
configurations of flow rules and the bitmasks in the match
fields, and [12] proposed two different algorithms to infer the
flow table size under First In First Out (FIFO) and LRU rule
replacement policy, but the policy must be known to apply
the correct algorithm. Most of these works use RTTs as their
observations. In our previous work [6], RTT measurements
were used to infer both fixed parameters of the flow table such
as size and replacement policy, and transient parameters such
as # active flows and their rates. However, all these works only

targeted the flow table at the edge switch directly connected to
the probing host. In this work, we extend the scope to the flow
tables at switches multiple hops away from the probing host.
The main challenge in this case is the increased randomness in
RTT measurements, which makes it impossible to accurately
infer the hit/miss experienced by a probe at each of the
traversed switches (see Section III-A).

Attack modeling: Due to their small sizes, flow tables are
known to be vulnerable to denial-of-service attacks that either
overwhelm their capacity [1], [3], [4], [5] or occupy them
with unpopular content [2], [6], both degrading the quality
of service for legitimate users. Most of these works mounted
the attacks on edge switches directly exposed to malicious
hosts. The reconnaissance method developed in this work can
potentially enable a host-based adversary to plan intelligent
attacks at switches deeper in the network. We leave the detailed
study of such attacks and their defenses to future work.

B. Summary of Contributions

Our contributions are summarized as follows:
1) We formulate the Multi-Switch Size Inference (MSSI)

Problem to jointly infer the flow table sizes at multiple
switches from RTTs measured by a single probing host.

2) By experimentally analyzing the relationship between
RTTs and flow table hits/misses, we develop an algo-
rithm that can accurately estimate the set of flow table
sizes along the probing path by combining specifically
designed probes with customized statistical tools.

3) We demonstrate via trace-driven Mininet experiments
that the proposed algorithm can achieve 10 times higher
accuracy than existing solutions.

Roadmap. Section II introduces our problem formulation.
Section III presents our solution. Section IV validates the
proposed solution via experiments. Section V concludes the
paper. Further experiments and results are provided as sup-
plementary materials in Appendix.

II. PROBLEM FORMULATION

A. Network Model

Consider a multi-hop SDN as illustrated in Fig. 1. We
model the flow table of each switch as a cache of flow rules.
According to the OpenFlow Switch Specification [13], each
rule contains several fields, including match, priority, counter,
action, and timeout, which determine which packets the rule
applies to and how to process them. Although in practice
a switch may contain multiple flow tables organized into a
pipeline, the default setting is to store all the rules in a single
table, which fits our cache-based model.

Each flow table, modeled as a cache of flow rules, has two
fundamental parameters: (1) the size, which determines the
maximum number of flow rules that can be stored, and (2) the
replacement policy, which governs the evictions of rules when
the table reaches its capacity. The former parameter is akin to
the cache size, while the latter parameter is similar to the cache
replacement policy. While OpenFlow provides the option to
remove rules proactively based on timeouts, their impact

Fig. 1. Sample topology showing with the attack host and the target switches.

is negligible compared to reactive rule replacements when
the flow table becomes saturated. The replacement policy
is typically an approximation of FIFO or LRU, e.g., Open
vSwitch [13] implements an approximation of LRU when
rules only have idle timeouts or FIFO when rules only have
hard timeouts. There are also more sophisticated replacement
policies proposed by researchers, such as those approximating
the Least Frequently Used (LFU) policy [14], [15], [16]. As
our focus is on the inference of flow table size, we do not
make any assumption on the replacement policy, except that:
(i) each newly requested rule will be inserted into the table,
and (ii) when the table is full, the next rule to evict will be
the oldest rule if all the rules are requested only once. These
assumptions are naturally satisfied by FIFO and LRU, and are
consistent with LFU.

B. Threat Model

We assume that the adversary controls one compromised
host that can measure the RTTs along routing paths originating
from it by generating round trip probes such as ping or TCP
packets. We assume the adversary to know the routing paths
to each destination. For example, in Fig. 1, the attacker knows
that the path from a compromised host h1 to another host h3

traverses switches s1, s2, and s3. Moreover, we assume that
through the technique in [1], the adversary can identify the
header fields used in rule matching and hence knows how to
craft packets to trigger new rule installations.

Our focus is on the inference of flow table sizes along one
probing path, which can then be repeated for all the paths the
compromised host can probe. Let K denote the number of
switches on the path under consideration, and C1, C2, ..., CK

denote the flow table sizes of these switches, measured by
the number of flow rules they can each store. The solution
to this basic problem can be used as a building block in
addressing more general cases with multiple compromised
hosts and multiple probing paths, which is left to future work.

C. Multi-Switch Size Inference (MSSI) Problem

The goal of the attacker is to use the measured RTTs to
infer as much information as possible about the flow table
sizes (Ci)

K
i=1 of multiple switches traversed by the probing

path, referred to as the MSSI problem.
The above problem is an extension of the single flow

table size inference problem addressed in [6]. Assuming the
ability to accurately detect whether a probe incurs hit or miss
at the target flow table, [6] developed an algorithm called

2

Robust Cache Size Estimation (RCSE) that can infer the size
of this flow table. A straightforward solution to MSSI is
thus to apply RCSE to each of the target switches based on
inferred hits/misses at this switch. However, as shown later
(Section III-A), the RTT of a multi-switch path does not permit
accurate inference of whether a hit or miss has occurred at each
of the switches. Thus, a different solution is needed for MSSI.

III. ALGORITHM DESIGN

We first conduct a preliminary experiment to identify what
information can be extracted from RTT measurements and
then design our inference algorithm accordingly.

A. Preliminary Experiment

Compared to flow table inference based on probing a single
switch, the main challenge in performing inference by probing
a sequence of switches is the lack of an inferable relationship
between the RTTs and the hits/misses incurred at the traversed
switches. We start by quantifying this challenge through a
preliminary experiment based on Mininet [17], which is an
SDN emulator running real kernel, switch, and application
code. Table I shows the version of each software we use.
The code for our experiment is available at [18].

TABLE I
SPECIFICATIONS OF EXPERIMENT

Software Version
Mininet 2.3.0.dev6
Ryu Controler 4.34
Open vSwitch 3.0.1
OpenFlow 0x1:0x6

Methodology: We emulate the round-trip communications
along a single path with K switches by sending TCP packets.
Below we present the results obtained under K = 2, but
similar results have been obtained under other values of K (see
Appendix B). Let the traversed switches be s1 and s2. Since
each probe invokes two flow rules at each switch (one for the
probing packet and one for its acknowledgement), each probe
invokes 4 flow rules, leading to 24 = 16 possible scenarios of
hits/misses as each invoked rule may or may not be in the flow
table. We profile the RTT distribution under each scenario by
configuring the desired flow table content from the controller
and then sending a probe to measure its RTT. For example, to
create the scenario of ‘m+h+h+h’ (miss at the first traversal
of s1 and hits elsewhere), we send a TCP packet, remove the
rule for forwarding this packet at s1, and send the same packet
again to measure its RTT. We repeat this procedure to collect
1000 RTT measurements under each scenario.

Result: Fig. 2 shows the profiling result in terms of the
empirical Cumulative Distribution Function (CDF) of the
RTT under each hit/miss scenario. These results reveal that:
(i) there is a clear positive correlation between the number
of misses and the RTT, with notable gaps between the mean
RTTs under different numbers of misses, but (ii) there are no
detectable differences between the RTT distributions under
different locations of the same number of misses, and (iii)
the ranges of RTTs under adjacent numbers of misses have
nonempty overlap.

Fig. 2. RTT distributions under all hit/miss scenarios (the vertical lines
indicate the average RTTs in each scenario).

Observation: The above results show that by measuring the
RTTs, it is possible to estimate the number of incurred misses
but not their specific locations, and the estimation based on
a single RTT measurement will contain non-negligible error.
This observation motivates our proposed solution as follows.

B. Proposed Algorithm

The preliminary experiment suggests that we cannot
uniquely associate the inferred flow table sizes with the
switches, as a change in the order of traversal will not notably
change the RTT distribution. Therefore, we can at most hope
to infer the set of flow table sizes {C(1), . . . , C(K)} =
{C1, . . . , CK}, where C(1) ≤ C(2) ≤ · · · ≤ C(K).

Fig. 3. Forward-backward probing for a two-switch path (C(1): size of the
smaller flow table, C(2): size of the larger flow table).

1) Vanilla Solution: Assuming accurate estimation of
#misses incurred by each probe, we can directly extend a
previous algorithm forward-backward-probing in [6]
to infer the flow table sizes at multiple switches.

The key idea of forward-backward-probing [6] is
to use a long sequence of probes, each requiring a different
rule, to flush the target flow table, and then use the same
sequence of probes, sent in the reverse order, to measure the
number of rules stored in the flow table, which reveals its size.
We can extend this idea to reveal the sizes of multiple flow
tables as follows. Consider the case of probing a two-switch
path with even-sized flow tables, as illustrated in Fig. 3. Let
fi,1 denote the en route flow for the i-th probe and fi,2 the
corresponding return flow. In the “forward probing” process,
we generate a sequence of c distinct back-to-back probes for
a sufficiently large parameter c (c > C(2)/2) to flush the flow
tables. In absence of background traffic, the smaller flow table
will store the rules generated by the last C(1)/2 probes, and
the larger flow table will store the rules generated by the last
C(2)/2 probes. In the “backward probing” process, we repeat
the probes in the reverse order, which will generate 0 miss

3

for each of the first C(1)/2 probes, 2 misses for each of the
next C(2)/2 − C(1)/2 probes, and 4 misses for each of the
remaining probes. In the case that C(1) (or C(2)) is an odd
number, there will be one probe that incurs 1 miss (or 3 misses)
during backward probing. Thus, given the #misses incurred by
each probe, we can use the number of probes incurring each
#misses during backward probing to estimate C(1) and C(2).
The idea can be easily extended to the case of K ≥ 2 switches.

However, the above solution hinges on accurate estimation
of the #misses incurred by each probe, which is nontrivial to
obtain due to the overlapping ranges of RTTs under different
#misses as shown in Fig. 2. Directly applying this solution will
lead to poor accuracy due to the notable error in estimating
#misses from individual RTT measurements, as shown in Table
II.

2) Improved Solution: To improve the robustness to the ran-
domness in RTTs, we propose to combine forward-backward
probing with change point detection. The observation is that
while individual RTTs can fluctuate randomly, the sequence
of RTTs during backward probing can be decomposed into
multiple sub-sequences as illustrated in Fig. 3, each corre-
sponding to a specific #misses. Thus, if we can detect the
boundaries between these sub-sequences, we can aggregate
the RTT measurements in each sub-sequence to estimate the
#misses with higher accuracy.

Overall algorithm: The overall algorithm Multi-Switch Size
Inference (MSSI) is shown in Algorithm 1. Starting from an
initial value of the sequence length c (line 2), it exponentially
increases c (line 13) to look for a sequence length large
enough to flush the largest flow table, indicated by the largest
estimated size Ĉ(K) being less than 2c (line 10). The algorithm
relies on a subroutine called Robust-CuSum-Probing
(Algorithm 2) to perform the probing experiment and compute
a noisy estimate C̃ of the flow table sizes. The subroutine is
repeated N times, and the results are aggregated by taking the
maximum for each flow table size (line 7). This is because the
presence of background traffic can cause the rules for probing
packets to be evicted earlier, leading to underestimation of
the flow table sizes, and taking the maximum over multiple
trials can reduce the underestimation error. Here, N is a design
parameter controlling the tradeoff between the robustness
against background traffic and the probing cost. Note that since
only the largest numbers are recorded (line 7), once Ĉ(1) = 2c
(line 8), all the estimates have reached their maximum value
under c distinct probes, and hence there is no need to further
repeat the experiment with the current value of c.

Subroutine: The subroutine, presented in Algorithm 2,
implements a variation of the forwarding-backward probing
process, with three primary steps:

1) Perform change point detection on the sequence of RTTs
measured during backward probing using CuSum, and
record the change point in an array if changes are detected
for τ consecutive measurements (lines 2–29).

2) Based on the detected change points in descending order,
divide the RTT measurements into sub-sequences and
estimate the #misses for each sub-sequence based on the

Algorithm 1: Multi-Switch Size Inference (MSSI)
input : Number of switches on the probing path K, number

of repetitions per probing experiment N , change
detection parameters (ω, T, τ)

output: Estimated flow table sizes in increasing order
Ĉ := (Ĉ(i))Ki=1

1 Ĉ ← zeros(1,K);
2 c← 1;
3 while true do
4 foreach i = 1, . . . , N do
5 C̃ ← Robust-CuSum-Probing(K, c, ω, T, τ);
6 foreach j = 1, . . . ,K do
7 Ĉ(j) ← max(Ĉ(j), C̃(j));
8 if Ĉ(1)

2
= c then

9 break;
10 if Ĉ(K)

2
< c then

11 break;
12 else
13 c← 2× c;
14 return Ĉ;

average RTT (lines 30–33).
3) Infer the flow table sizes in ascending order from the

#probes experiencing each #misses (lines 34–36) based
on the idea described in Section III-B1.

We now provide detailed explanations for the above steps.
Step 1 - Change Detection: CuSum (cumulative sum) [19]

is a sequential change point detection technique for detecting
changes in mean. In our context, we apply CuSum to the
sequence of RTTs measured during backward probing, stored
as an array with RTT [i] being the RTT for probe pi (line 6).
CuSum maintains a cumulative sum S ← max(0, S + x̃− ω)
(line 15), where x̃ is the latest RTT measurement RTT [i]
normalized by the estimated mean x̄ and variance σ2 (line 10).
We estimate the mean and variance from the measurements
since the last detected change at RTT [b] by

x̄ = mean(RTT [i : b]) :=
1

b− i+ 1

b∑
t=i

RTT [t], (1)

σ2 = var(RTT [i : b]) :=
1

b− i

b∑
t=i

(RTT [t]− x̄)
2
. (2)

Originally, CuSum detects a change if S meets a detection
threshold T , where ω and T are design parameters control-
ling the tradeoff between false alarm and miss detection.
To overcome the randomness in a single RTT measurement,
we modify the decision rule by introducing a robustness
parameter τ such that a change is detected only if S ≥ T
for τ consecutive measurements, based on the same initial
cumulative sum S̃ (line 13). Once a change is detected, we
will record the change point in an array B and restart the
computation of CuSum from the latest change point (lines 23–
26). We can repeat this step (lines 2–29) multiple times and
aggregate the detected change points (e.g., via majority vote)
to improve the robustness against measurement noise.

Step 2 - #Misses Estimation: As the RTT measurements
between consecutive change points are expected to be

4

Algorithm 2: Robust CuSum Probing
input : number of switches K, number of probes c, change

detection parameters (ω, T, τ)
output: Estimated flow table sizes in increasing order Ĉ

1 Ĉ ← zeros(1,K);
2 S ← 0, b← c, B ← [c], κ← 0;
3 foreach i = 1, . . . , c do
4 send probe pi;
5 foreach i = c, c− 1, . . . , 1 do
6 send probe pi, and record its RTT in RTT [i];
7 if i = b then
8 x̃← 0;
9 else

10 x̃← (RTT [i]−x̄)
σ

, where x̄ = mean(RTT [i : b]),
σ2 = var(RTT [i : b]);

11 Spre ← S;
12 if κ > 0 then
13 S ← max(0, S̃ + x̃− ω);
14 else
15 S ← max(0, S + x̃− ω);
16 if S >= T then
17 κ← κ+ 1;
18 if κ = 1 then
19 S′ ← 0, S̃ ← Spre;
20 else
21 x̃′ ← (RTT [i]−x̄′)

σ′ , where
x̄′ = mean(RTT [i : i+ κ− 1]),
σ′2 = var(RTT [i : i+ κ− 1]);

22 S′ ← max(0, S′ + x̃′ − ω);
23 if κ = τ then
24 b← i+ τ − 1;
25 append b to B;
26 S ← S′, κ← 0;
27 else
28 κ← 0;
29 append 0 to B;
30 ĉ← zeros(1, 2K);
31 foreach j = 1, . . . , |B| − 1 do
32 m← estimated #misses for RTT

mean(RTT [B[j + 1] + 1 : B[j]]);
33 ĉm ← B[j]−B[j + 1];
34 Ĉ(1) ← 2ĉ0;
35 foreach j = 1, . . . ,K − 1 do
36 Ĉ(k+1) ← Ĉ(k) + 2ĉ2k;
37 return Ĉ;

associated with the same #misses, we can use the change
points to partition the RTT measurements into sub-sequences,
and use the measurements within a sub-sequence as i.i.d.
samples to obtain a more accurate estimation of the #misses. In
our evaluation, we use an intuitive decision boundary given by

tm−1,m :=
µ
m
+ µm−1

2
, m = 1, . . . , 2K, (3)

where µ
m

/µm is the minimum/maximum average RTT under
a hit/miss scenario with m misses, and estimate the #misses
as m if the mean RTT falls in [tm−1,m, tm,m+1) (t−1,0 :=
0, t2K,2K+1 :=∞). Other estimators can be used as well.

Step 3 - Size Inference: The results of change point detection
and #misses estimation provide ĉm, the number of probes
estimated to incur m misses (m ∈ {0, . . . , 2K}). Based on

the analysis in Section III-B1, we can then compute the flow
table sizes using the recursive formula given in lines 34 and 36.

3) Performance Analysis: The accuracy of our solution is
guaranteed as follows (see proof in Appendix A).

Theorem III.1. If (i) there is no background traffic during
probing, (ii) all flow table sizes are even, and (iii) each estimate
ĉm is the true #probes incurring m misses (m = 0, . . . , 2K),
then the inference result Ĉ of Algorithm 2 will be equal to
the ground truth C := (C(k))Kk=1.

Theorem III.2. Assume that (i) there is no background traffic
during probing, (ii) all flow table sizes are even, (iii) each RTT
measurement is an independent Gaussian random variable with
distribution1 N (µm, σ2

m), where m is the incurred #misses,
and (iv) the sample mean x̄ and variance σ2 used to normalize
RTT [i] approximate the true mean and variance at the last
change point before RTT [i]. Then the probability PF for
Algorithm 2 to falsely detect a change at RTT [i] when there
is no change in RTT [i− τ + 1 : i] is bounded by

PF ≤ (1− Φ(ω))τ , (4)

and the probability PM (m) for Algorithm 2 to miss a change
from m misses to m+ 2 misses is bounded by

PM (m) ≤ τΦ

(
σm(ω + T)− µm+2 + µm

σm+2

)
, (5)

where Φ(·) is the CDF of N (0, 1).

Remark: The assumption of even flow table sizes is not crit-
ical. It just implies an additional error of ±1 if the flow table
sizes are odd. Theorem III.1 implies that without background
traffic, the accuracy of Algorithm 2 is mostly determined by
the accuracy of change point detection, as the estimation of
#misses for each sub-sequence is highly accurate (see Sec-
tion IV). Theorem III.2 quantifies the accuracy of change point
detection as a function of the design parameters (ω, T, τ).
The interference from background traffic is mitigated by
repeating Algorithm 2 multiple times as in Algorithm 1.

IV. EXPERIMENTAL EVALUATION

Experiment Setting: We use Mininet as in Section III-A.
Due to space limitation, we will only present results for
K = 2 and (C(1), C(2)) = (2000, 3000), but similar results
have been obtained under other settings (see Appendix C).
We profile the mean RTT under each hit/miss scenario as
in Section III-A using 1000 measurements. To simulate a
realistic environment, we generate background traffic on each
link according to the dataset UNI2 from [20], which contains
9 packet traces from a data center.

Results on #misses estimation: Table II shows the accuracy
of estimating #misses using the thresholds in (3) based on
different numbers of i.i.d. RTT measurements. Each entry
corresponding to true #misses = m and estimated #misses
= m′ is the fraction of time the mean RTT generated under

1Although the RTT distribution depends on both the number and the
locations of the misses, for a given configuration of flow table sizes along the
probing path, the locations are fixed once the number is determined.

5

TABLE II
DISTRIBUTION OF ESTIMATED #MISSES (500 RTTS PER SCENARIO)

estimated #misses from single/500 RTTs
true #misses 0 1 2 3 4
0 0.99/1 0.01/0 0/0 0/0 0/0
1 0.005/0 0.9325/1 0.0475/0 0.01/0 0.005/0
2 0.0025/0 0.0025/0 0.765/1 0.1975/0 0.0325/0
3 0/0 0/0 0.065/0 0.8325/1 0.1025/0
4 0/0 0/0 0.12/0 0.32/0 0.68/1

m misses falls into the decision interval corresponding to
m′ misses. The results show that (i) a single RTT is not a
reliable indicator of #misses, but (ii) the mean of multiple
RTTs (incurring the same #misses) is a reliable indicator.

Results on change point detection: The results in Table II
indicate that we can accurately estimate the #misses for each
sub-sequence of probes incurring the same #misses, if we can
correctly detect the change points. The proper tuning of the
design parameters (ω, T, τ) are crucial in balancing false alarm
and miss detection. To this end, we experimentally explore
various values of ω and τ , and set T to be slightly smaller
than the minimum value of S at the true change points.

Given a sufficiently large #probes c (c > C(K)/2),
the true change points during backward probing are (c −
C(1)/2, . . . , c − C(K)/2). The mean absolute errors (MAE)
of the detected change points2 (B[1], . . . , B[K]) are shown in
Table III, measured as (|c−C(1)/2−B[1]|, . . . , |c−C(K)/2−
B[K]|). Although the detection performance is insensitive to
the value of τ in this experiment, our larger scale experiments
in Appendix C indicate the necessity of having τ > 1.

Based on these results, we set ω = 2, T = 5, and τ = 3.
TABLE III

MAE OF CHANGE POINT DETECTION (c = 2048, 5 MONTE CARLO RUNS)
ω = 0, T = 18 ω = 2, T = 5 ω = 10, T = 2

τ = 1 (975, 1425) (2, 3.4) (4, 1250)
τ = 3 (861, 1407) (2, 2.2) (20.4, 1309)

Results on flow table size inference: We compare our
overall solution in Algorithm 1 with the vanilla solution in
Section III-B1, which represents the state of the art [6]. We
find that under the adopted background traffic, the proposed
solution already returns accurate results even if N = 1 (i.e.,
running Algorithm 2 only once for each value of c), if we
repeat the change point detection (lines 2–29 in Algorithm 2)
multiple times (10 times here) and aggregate the results by
majority vote. Table IV shows the normalized mean absolute
error |C(k) − Ĉ(k)|/C(k) in percentage (C(k): ground truth,
Ĉ(k): estimate). The result shows that our proposed solution
achieves 10 times higher accuracy than a direct application of
the existing solution. We note that although N = 1 suffices
here, a larger value of N may become necessary under heavier
background traffic. We have validated this conclusion under
other experimental settings, as shown in Appendix C.

V. CONCLUSION

Observing that most adversarial reconnaissance studies in
SDN only considered the edge switch, we presented a novel

2According to Algorithm 2, B[0] = c. It is possible that the number of
detected change points K̂ ̸= K. In computing MAE, we pad zeros if K̂ < K
and ignore the extra change points if K̂ > K.

TABLE IV
NORMALIZED MAE OF FLOW TABLE SIZE INFERENCE

normalized MAE C(1) C(2)

vanilla solution 14.5% 19%
improved solution 1.9% 1.5%

algorithm for inferring the flow table sizes of internal switches
by measuring the RTTs of a multi-hop path from a com-
promised host. The proposed algorithm combined carefully
designed probing sequences and statistical tools to infer the
set of flow table sizes for the switches on the probing path,
while being robust to measurement noise and interference from
background traffic. To the best of our knowledge, this is the
first algorithm that can reveal detailed parameters of internal
switches of an SDN from the perspective of a host-based
adversary. The efficacy of our algorithm has been demon-
strated through Mininet experiments under realistic settings.
Our result reveals a new vulnerability of SDN that signals the
importance of protecting not just the edge switches but also
switches deeper in the network from malicious hosts.

REFERENCES

[1] J. Cao, M. Xu, Q. Li, K. Sun, Y. Yang, and J. Zheng, “Disrupting
sdn via the data plane: A low-rate flow table overflow attack,” in
SECURECOMM, 2017.

[2] J. Weekes and S. Nagaraja, “Controlling your neighbour’s bandwidth
for fun and for profit,” in Security Protocols, 2017.

[3] Y. Qian, W. You, and K. Qian, “Openflow flow table overflow attacks
and countermeasures,” in IEEE EuCNC, 2016.

[4] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending
against flow table overloading attack in software-defined networks,”
IEEE Transactions on Services Computing, vol. 12, no. 2, pp. 231–246,
March-April 2019.

[5] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in ACM CCS, November 2013.

[6] M. Yu, T. Xie, T. He, P. McDaniel, and Q. K. Burke, “Flow table
security in sdn: Adversarial reconnaissance and intelligent attacks,”
IEEE/ACM Trans. Netw., vol. 29, no. 6, p. 2793–2806, dec 2021.
[Online]. Available: https://doi.org/10.1109/TNET.2021.3099717

[7] N. Laoutaris, G. Zervas, A. Bestavros, and G. Kollios, “The cache
inference problem and its application to content and request routing,” in
IEEE INFOCOM, 2007.

[8] M. Dehghan, D. Goeckel, T. He, and D. Towsley, “Inferring military
activity in hybrid networks through cache behavior,” in MILCOM, 2013.

[9] J. Sonchack, A. Dubey, A. Aviv, J. Smith, and E. Keller, “Timing-based
reconnaissance and defense in software-defined networks ,” in ACM
ACSAC, 2016.

[10] S. Liu, M. K. Reitner, and V. Sekar, “Flow reconnaissance via timing
attacks on sdn switches,” in IEEE ICDCS, 2017.

[11] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in ACM Symposium
on SDN Research (SOSR), 2017.

[12] Y. Zhou, K. Chen, J. Zhang, J. Leng, and Y. Tang, “Exploiting the
vulnerability of flow table overflow in software-defined networks: Attack
model, evaluation, and defense,” Security and Communication Networks,
pp. 1–15, January 2018.

[13] “Open vSwitch 2.14.90 Documentation,” https://docs.openvswitch.org/
en/latest/.

[14] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in
SOSR, 2016.

[15] X. Li and W. Xie, “CRAFT: A cache reduction architecture for flow
tables in software-defined networks,” in IEEE ISCC, July 2017.

[16] J.-P. Sheu and Y.-C. Chuo, “Wildcard rules caching and cache replace-
ment algorithms in software-defined networking,” IEEE Transactions
on Network and Service Management, vol. 13, no. 1, pp. 19–29, March
2016.

[17] “Mininet.” [Online]. Available: http://mininet.org/

6

[18] T. Xie, “Cache Size Inference: RTT Collection .” [Online]. Available:
https://github.com/SophieCXT/Flow-Table--Adversarial-Inference-RTT

[19] O. A. Grigg, V. T. Farewell, and D. J. Spiegelhalter, “Use of risk-adjusted
CUSUM and RSPRT charts for monitoring in medical contexts,” Statis-
tical Methods in Medical Research, vol. 12, no. 2, pp. 147–170, 2003.

[20] T. Benson, “Data set for IMC 2010 data center measurement,” http:
//pages.cs.wisc.edu/∼tbenson/IMC10 Data.html.

7

APPENDIX A
SUPPORTING PROOFS

A. Proof of Theorem III.1

Proof. Since C(1), . . . , C(K) are even and there is no back-
ground traffic, at the end of forwarding probing, the smallest
flow table must contain the rules for the last C(1)/2 probes,
the second smallest flow table must contain the rules for the
last C(2)/2 probes, etc. As C(1) ≤ C(2) ≤ · · · ≤ C(K), all the
flow tables contain the rules for the last C(1)/2 probes, and
hence these probes will incur 0 miss during backward probing,
i.e., ĉ0 = C(1)/2. Moreover, the flow table of size C(k+1) will
store the rules for (C(k+1) − C(k))/2 more probes than the
flow table of size C(k), and each of these probes will incur
2k misses at the flow tables of sizes C(1), . . . , C(k). Thus,
ĉ2k = (C(k+1) − C(k))/2. This proves the correctness of the
base case and the recursion in lines 34–36 of Algorithm 2.

B. Proof of Theorem III.2

Proof. Let x̃i denote the normalized value of RTT [i], and Si

the cumulative sum after incorporating x̃i.
For Algorithm 2 to falsely detect a change at RTT [i] when

there is no change in RTT [i− τ + 1 : i], we must have

PF = Pr{Si ≥ T, . . . , Si−τ+1 ≥ T |Si+1 < T}

=

i∏
j=i−τ+1

Pr{Sj ≥ T |Si+1 < T} (6)

≤
i∏

j=i−τ+1

Pr{x̃j − ω > 0} (7)

= (1− Φ(ω))
τ
, (8)

where (6) is because Si−τ+1, . . . , Si are all computed from the
same starting point Si+1 according to line 13, (7) is implied
by the updating equation in line 13, and (8) is because x̃j ∼
N (0, 1) when there is no change.

For Algorithm 2 to miss a change at RTT [i] when RTT [i−
τ + 1], . . . , RTT [i] all incur m+ 2 misses and their normal-
ization is performed with x̄ = µm and σ2 = σ2

m, we have

PM (m) = Pr{∃j ∈ {i− τ + 1, . . . , i} : S̃j+1 + x̃j − ω < T}

≤
i∑

j=i−τ+1

Pr{S̃j+1 + x̃j − ω < T} (9)

≤
i∑

j=i−τ+1

Pr{x̃j < ω + T} (10)

= τ · Φ
(
σm(ω + T)− µm+2 + µm

σm+2

)
, (11)

where S̃j+1 denotes the starting point for computing Sj , (9)
is by union bound, (10) is because S̃j+1 ≥ 0, and (11) is
because x̃j ∼ N (µm+2−µm

σm
,
σ2
m+2

σ2
m

) in this case.

TABLE V
ROUND TRIP TIME (MSEC) UNDER VARYING #MISSES

#miss min max avg RTT variance
0 0.066 0.116 0.08141 8.6874
1 2.023 19.542 3.24697 0.4045
2 2.388 8.808 6.07779 1.0653
3 5.832 12.979 8.84059 1.0499
4 7.328 17.578 11.81317 0.9731
5 10.960 21.247 14.75549 1.2239
6 13.684 20.995 17.61178 0.3502

APPENDIX B
PRELIMINARY EXPERIMENT UNDER K = 3

To validate our observations in the preliminary experiment
(Section III-A), we study the relation between the RTT and
the flow table hits/misses on a three-switch path (i.e., K = 3).
Table V gives the RTT statistics of all the 26 = 64 possible
scenarios of hits/misses, and Table VI and Fig. 4 show the
detailed results under 1 miss. We have collected 1000 RTT
measurements under each hit/miss scenario.

Similar to the two-switch experiment, we observe that:
(i) there is a positive correlation between #misses and the
RTT, meaning that as #misses increases, the RTT also tends
to increase (as shown in Table V), (ii) given a number of
RTT measurements with the same number and locations of
misses, it is possible to accurately estimate #misses, while
estimation based on a single measurement will be noisy,
and (iii) pinpointing the exact locations of misses will be
difficult. Meanwhile, this experiment also reveals some new
observations. As depicted in Fig. 4, there is a noticeable
gap between two groups of RTT distributions, where misses
occurred in the backward direction of probe propagation (from
the probing destination to the probing host, i.e., the last three
hit/miss scenarios in the legend) tend to cause longer RTTs
than misses in the forward direction of probe propagation
(from the probing host to the probing destination, i.e., the
first three hit/miss scenarios in the legend), even if the total
#misses are the same. However, it is still impossible to
distinguish which specific switch has caused the miss. We
have observed increasing overlap in the ranges of RTTs under
varying locations of misses when #misses > 1.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
RTT in msec

0.0

0.2

0.4

0.6

0.8

1.0

cu
m
ul
at
iv
e
pr
ob

ab
ilit

y

m+h+h+h+h+h
h+m+h+h+h+h
h+h+m+h+h+h
h+h+h+m+h+h
h+h+h+h+m+h
h+h+h+h+h+m

Fig. 4. RTT distributions under scenarios with 1 miss (the vertical lines
indicate the average RTTs in each scenario).

8

TABLE VI
ROUND TRIP TIME (MSEC) UNDER VARYING LOCATION OF 1 MISS

Cases (hit/miss) min max avg RTT variance
m+h+h+h+h+h 2.107 19.542 2.76753 0.3097
h+m+h+h+h+h 2.023 3.840 2.57554 0.0299
h+h+m+h+h+h 2.086 3.636 2.72572 0.0421
h+h+h+m+h+h 2.953 5.436 3.82956 0.0411
h+h+h+h+m+h 2.833 9.547 3.71693 0.0734
h+h+h+h+h+m 2.961 4.902 3.86657 0.0343

TABLE VII
MAE OF CHANGE POINT DETECTION (c = 12500, 5 MONTE CARLO

RUNS)
ω = 2, T = 10

τ = 1 (2416.2, 3487, 4762)
τ = 2 (1533, 2261, 2949.2)
τ = 3 (139.4, 11, 5.8)

APPENDIX C
ADDITIONAL EXPERIMENTAL EVALUATION

A. Experiment Setting

We validate the generalizability of the results in Section IV
by repeating the experiments under a different setting of K =
3 and (C(1), C(2), C(3)) = (8000, 14000, 20000). We use the
same methods as in Section IV to profile the mean RTT under
each hit/miss scenario and generate background traffic. The
results on #misses estimation are similar to Table II (omitted).
Hence, we only present the results on change point detection
and flow table size inference below.

B. Necessity of τ > 1

Under the setting of ω = 2, as previously selected in the
2-switch case, we set the detection threshold T as before
according to the minimum CuSum values at the true change
points. We find that in this larger scale experiment, setting
τ > 1 becomes necessary. In contrast to Table III, Table VII
shows a rapid decrease in error as τ increases. This is because
as the path length increases, the RTTs fluctuate more, causing
a higher false alarm probability in change point detection. By
slightly increasing the value of τ , we can significantly reduce
the false alarm probability by validating each change on τ
consecutive measurements. A side effect of this design is that
changes lasting for fewer than τ measurements will be missed.
However, this case is unlikely to occur in practice for small
τ , as it implies the existence of two switches with different
flow table sizes that differ by less than 2τ .

Fig. 5 shows the detailed results in 1 Monte Carlo run
under the parameters ω = 2, T = 10, τ = 3. We can see
that although there are outliers in the RTT measurements, our
modified CuSum method with properly tuned parameters can
still detect the change points with high accuracy.

C. Results on Flow Table Size Inference

Finally, we compare our overall solution presented in Al-
gorithm 1 with the state-of-the-art solution in Section III-B1
under the same parameter setting as in Table IV (N = 1 and
10 repetitions of change point detection followed by majority
vote). Table VIII presents the normalized mean absolute error
|C(k) − Ĉ(k)|/C(k) in percentage, where C(k) denotes the

0 2000 4000 6000 8000 10000 12000
probe index

12

14

16

18

20

22

24

26

28

RT
T

RTT
ground truth
predicted

Fig. 5. Comparison between the detected (red dotted vertical line) and real
(black dashed vertical line) change points, with the RTT measurements shown
as blue circles in the background.

TABLE VIII
NORMALIZED MAE OF FLOW TABLE SIZE INFERENCE

normalized MAE C(1) C(2) C(3)

vanilla solution 36.8% 61.9% 72.4%
improved solution 3.4% 7.5% 8.7%

ground truth and Ĉ(k) represents the estimate. The result
confirms that our proposed solution improves the accuracy
of (a direct application of) the existing solution by about 10
times. Meanwhile, in comparison with Table IV, the accuracy
of both solutions degrades as the path length and flow table
sizes increase, due to more randomness in RTTs and more
interference from background traffic.

9

