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Abstract—In-network caching and flexible routing are two of the
most celebrated advantages of next generation network infrastruc-
tures. Yet few solutions are available for jointly optimizing caching
and routing that provide performance guarantees for networks
with arbitrary topology. We take a holistic approach towards this
fundamental problem by analyzing its complexity in all the cases
and developing polynomial-time algorithms with approximation
guarantees in important special cases. We also reveal the funda-
mental challenge in achieving guaranteed approximation in the
general case and propose an alternating optimization algorithm
with good empirical performance and fast convergence. Our algo-
rithms have demonstrated superior performance in both routing
cost and congestion compared to the state-of-the-art solutions in
evaluations based on real topology and request traces.

Index Terms—Approximation algorithm, cache network, joint
caching and routing, unsplittable flow problem.

I. INTRODUCTION

A S TWO of the most well-studied topics in computer com-
munication networks, caching and routing play comple-

mentary roles: caching brings content closer to the users, and
routing optimizes the performance of the communication paths.
It is thus natural to explore the benefits of combining these
control options via joint caching and routing.

While joint caching and routing applies to many network
scenarios, it is particularly relevant in next generation networks
which provide services beyond data transfer. For example,
Information-Centric Network (ICN) promises to offer pervasive
content caching at routers [2], [3], [4], and next generation
cellular network proposes to offer content caching at various
types of base stations [5], [6], [7], [8], [9], [10]. The challenge,
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however, is in solving the optimization problem designed to
jointly optimize content placement and routing, which has re-
ceived significant attention.

To this end, many tailor-made solutions have been developed
for specific systems, e.g., a hierarchical IPTV system [11] or a
heterogeneous cellular network with small-cell and macro-cell
base stations [5], [6]. The hierarchical structure of these systems
offers very limited routing options involving only a couple of
hops, greatly simplifying the routing problem but making the
solutions inapplicable in general networks.

Meanwhile, few works have addressed the fundamental prob-
lem of joint content placement and multi-hop routing in net-
works with arbitrary topology. Due to the huge solution space,
most existing solutions either relied on heuristics or resorted
to the generic branch-and-bound method with an exponential
worst-case complexity [12]. Polynomial-time algorithms with
approximation guarantees were not available until recently,
when [3] proposed an approximation algorithm for minimizing
the routing cost in the underloaded regime and [12] proposed an
approximation algorithm for maximizing the number of served
requests in the overloaded regime.

In this work, we address joint caching and routing in arbitrary
topology, with the objective of minimizing the routing cost as
in [3]. However, our work differs from [3] in that: (i) while [3]
ignored link capacity constraints, we consider both limited and
unlimited link capacities, where the limited link capacities sig-
nificantly complicate the routing problem; (ii) while [3] only
optimized routing among a limited set of candidate paths (e.g.,k-
shortest paths to origin servers), we optimize routing among all
possible paths while maintaining a polynomial complexity. As
shown later (Section VI), these differences allow our solutions
to achieve substantially lower routing cost and link congestion.

A. Related Work

As caching and routing were each studied extensively with
large numbers of related works, we will only review works
addressing their joint optimization below.

Joint caching and routing: The problem of joint caching
and routing has been studied in a number of network scenar-
ios: ICN [2], [3], [4], Content Delivery Network (CDN) [13],
[14], [15], [16], content provider networks [11], [17], cellular
networks [5], [6], [7], [8], [9], [10], and IoT networks [12].
Majority of existing works focused on specific topologies, e.g.,
a 3-tier hierarchical topology [8], [9], [11], or a 2-tier hierarchical
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topology [5], [6], [7]. These special topologies have very limited
routing options, thus simplifying the problem.

Among works considering general network topology, only
a few provided performance guarantees [3], [10], [12]. How-
ever, [3], [10] did not consider link capacity constraints, which
greatly simplifies the routing problem as it suffices to route each
request to the nearest replica of the requested content. While [12]
considered link capacity constraints, it assumed an overloaded
regime where not all requests can be served, and focused on
maximizing the number of served requests. In contrast, we
consider routing cost minimization in the underloaded regime
as in [3], which represents the normal operation state of most
networked systems, but we tackle a much more general problem
than [3] and also improve it in the special case of unlimited link
capacities.

Other related joint optimizations: Besides caching and rout-
ing, other joint optimizations have also been studied, e.g., joint
content placement, server selection, and storage capacity allo-
cation [18], and joint cache deployment, request routing, and
content placement [14]. The content placement problem is also
similar to the placement of virtual network functions, which
is usually jointly optimized with routing [19], [20]. However,
due to the high complexity of these problems, existing solutions
are mostly based on heuristics. The few existing solutions that
provide performance guarantees [21], [22], [23] address opti-
mization problems that are very different from ours, and are
thus not comparable with our work. Specifically, [21] optimized
request rates and content placement, but assumed predetermined
routes; [22] optimized VM allocation, content placement, and
request routing, but ignored link capacities; [23] optimized
request routing and content retention time, but only provided
performance bounds in the case of uncapacitated caches.

B. Summary of Contributions

We consider the problem of joint caching and routing for
minimizing the total routing cost under cache and link capacity
constraints. After formulating the problem as a comprehensive
optimization that covers both simple content replication (inte-
gral caching) with single-path routing (integral routing) and
caching fractions of coded content (fractional caching) with
multi-path routing (fractional routing), we make the following
contributions:

1) We analyze the complexity of the optimization in all the
cases through connections to known NP-hard problems.

2) We develop efficient algorithms, with focus on the hard-
est case of integral caching and integral routing. In the
special case of unlimited link capacities, we develop a
truly polynomial-time algorithm based on pipage round-
ing that achieves the same constant-factor approximation
as the pseudo polynomial-time algorithm in [3]. In another
special case of binary cache capacities, we reduce our
problem to the minimum-cost single-source unsplittable
flow problem (MSUFP) and develop a polynomial-time
bicriteria approximation algorithm that improves the state-
of-the-art MSUFP algorithm when each demand is much
smaller than link capacities. We then apply the ideas from

these special cases to develop a heuristic algorithm for
the general case that alternatingly optimizes caching and
routing.

3) We further extend the above solutions developed for equal-
sized content items to the case of heterogeneous-sized
items. While caching items of heterogeneous sizes can
no longer be solved by pipage rounding, we show that the
problem still has the desirable properties of submodular
objective and p-independence constraints, which allows
the greedy algorithm to achieve a constant approximation.

4) We evaluate our solutions against state-of-the-art bench-
marks in the practical application scenario of edge
caching. Our results based on real topology and request
traces show that: (i) when given perfect knowledge of
the demand, our algorithms can significantly improve the
state-of-the-art solutions in both routing cost and conges-
tion, (ii) the advantage remains when the decisions are
based on predicted demand produced by a realistic predic-
tion method, and (iii) dividing files into equal-sized chunks
can significantly improve the performance of caching and
routing.

Roadmap: Section II formulates our optimization problem,
Section III analyzes its complexity, Section IV presents our
algorithms and approximation analysis, Section V addresses
the extension to heterogeneous item sizes, Section VI provides
evaluation results, and finally Section VII concludes the paper.
All the proofs can be found in Appendix A of the supplementary
file, available online.

II. PROBLEM FORMULATION

A. Network Model

We model the cache network as a directed graph G = (V,E),
where V is the set of nodes, and E the set of links. Collectively,
the nodes serve a catalog C of content items (e.g., file chunks),
which are assumed to be of equal size as in [3], [12], [21]; this
assumption will be relaxed later (see Section V). To serve the
content, each node v is equipped with a cache, which can store
up to cv content items (cv = 0 if v has no cache). A node that
does not store a content item can request it from other nodes.
Each link (u, v) ∈ E can transfer cuv content items per unit time
(assuming that the size of a request is negligible). We model each
type of requests by a pair (i, s) ∈ C × V , meaning that node s
requests a content item i. Let R ⊆ C × V denote the set of all
types of requests, and λ(i,s) (unit: requests per unit time) denote
the arrival rate of requests of type (i, s).

In this work, we consider the under-loaded regime, where
there are generally multiple ways to place and route content
items such that all the requests can be satisfied. Our objective
is to find a feasible solution that minimizes the total routing
cost. To this end, we associate each link (u, v) ∈ E with a
routing cost wuv ≥ 0 (wuv may not equal wvu), denoting the
cost of transferring a content item over this link. The routing
cost can model any additive metric. For example, if wuv denotes
monetary cost (e.g., for leasing bandwidth), then minimizing the
total routing cost minimizes the monetary cost in serving the
requests; if wuv denotes − log(link reliability), then under the
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assumption of independent link failures, minimizing the total
routing cost minimizes the average of − log(path reliability),
which maximizes the success rate of content retrieval. The spe-
cific choice of routing costs is not our focus; instead, our focus is
on designing the caching strategy and the routing strategy based
on a given cost per link such that the total routing cost can be
minimized subject to the above resource constraints.

B. Model of Caching

We use xvi to denote the caching decision regarding storing
content item i at node v. If a content item can only be replicated
as a whole, we require integral caching xvi ∈ {0, 1} (1: storing
the item, 0: not storing the item). If a cache can store (a coded
version of) a fraction of an item, we allow fractional caching
xvi ∈ [0, 1]. For example, using random linear code, we can
divide each item into small chunks and store linear combinations
of these chunks at caches such that the original item can be
recovered with high probability as long as sufficiently many
coded chunks are retrieved [24], where xvi denotes the fraction
of coded chunks for content item i that are stored at node v.

C. Model of Routing

Due to the possibility of multiple nodes storing a requested
item, the routing decision contains both source selection that
selects the source(s) to retrieve the content from, and routing that
selects the path(s) to retrieve the content through. Depending on
how items are cached, we may require integral source selection
r
(i,s)
v ∈ {0, 1}, where r

(i,s)
v = 1 indicates that v is selected as

the only source for serving request (i, s), or we may allow frac-

tional source selection r(i,s)v ∈ [0, 1], where r(i,s)v is the fraction
of item i served from node v to node s. Depending on whether
multi-path routing is supported, we may require integral routing
f
(i,s)
uv ∈ {0, 1}, where f (i,s)

uv = 1 indicates that link (u, v) is on
the only path serving request (i, s), or we may allow fractional

routing f
(i,s)
uv ∈ [0, 1], where f

(i,s)
uv is the fraction of the flow

serving request (i, s) that traverses link (u, v).

D. Problem: Optimal Joint Caching and Routing

We now formally define the joint caching and routing problem
we want to solve in the form of an optimization:

min
f ,x,r

∑
(i,s)∈R

λ(i,s)

∑
(u,v)∈E

wuvf
(i,s)
uv (1a)

s.t.
∑

(i,s)∈R
λ(i,s)f

(i,s)
uv ≤ cuv, ∀(u, v) ∈ E, (1b)

∑
w:(u,w)∈E

f (i,s)
uw −

∑
w:(w,u)∈E

f (i,s)
wu = r(i,s)u − 1u=s,

∀(i, s) ∈ R, u ∈ V, (1c)∑
u∈V

r(i,s)u = 1, ∀(i, s) ∈ R, (1d)

r(i,s)v ≤ xvi, ∀(i, s) ∈ R, v ∈ V, (1e)

∑
i∈C

xvi ≤ cv, ∀v ∈ V, (1f)

xvi ∈
{{0, 1} if integral caching,
[0, 1] if fractional caching,

∀v ∈ V, i ∈ C,

(1g)

f (i,s)
uv , r(i,s)v ∈

{{0, 1} if integral routing,
[0, 1] if fractional routing,

∀(i, s) ∈ R, (u, v) ∈ E, v ∈ V. (1h)

The decision variables are f := (f
(i,s)
uv )(i,s)∈R,(u,v)∈E (rout-

ing), x := (xvi)v∈V,i∈C (caching), and r := (r
(i,s)
v )(i,s)∈R,v∈V

(source selection).
The objective (1a) is to minimize the total routing cost (per

unit time). Constraints (1b) and (1c) are the link capacity and
the flow conservation constraints as in the multicommodity flow
problem. In our context, each commodity (i, s) represents the
responses to requests of type (i, s), and r

(i,s)
u − 1u=s is the

fraction of commodity (i, s) emitted from node u (1· denotes
the indicator function). Constraint (1d) ensures that each request
is served by sufficient sources, and constraint (1e) ensures that
each selected source stores (a sufficient fraction of) the requested
content. Constraint (1f) models the cache capacity constraint
at each node. Constraints (1g) and (1h) specify the allowable
caching/routing decisions. Note that integral routing implies
integral source selection, as modeled by (1c). While the reverse
is not strictly true, we only consider cases that routing and source
selection are simultaneously integral/fractional, as they can often
be combined into a pure routing problem in an auxiliary graph
as shown later.

Based on the choices in constraints (1g) and (1h), (1) models
the joint optimization of caching and routing in three cases:

1) fractional caching and fractional routing (FC-FR),
2) integral caching and fractional routing (IC-FR), and
3) integral caching and integral routing (IC-IR).
In theory, there is a fourth case, fractional caching and integral

routing (FC-IR). However, under integral routing, the source
selection must also be integral, which means that there is no
value for caching partial content items. Therefore, there must be
an optimal solution for FC-IR that is feasible (and optimal) for
IC-IR, and thus it suffices to consider the above three cases.

Clearly, IC-IR is the most constrained case with the worst rout-
ing cost (under the optimal solution) among the three cases, but it
also has the least requirement on implementation, by storing un-
coded content and performing single-path routing. Meanwhile,
FC-FR is the least constrained case with the best routing cost,
but its solution is the most complicated to implement, requiring
content encoding/decoding and support of multi-path routing.
It is thus of interest to investigate all three cases to understand
the tradeoff among computational complexity, routing cost, and
implementation requirements.

III. COMPLEXITY ANALYSIS

The optimization (1) is a linear programming (LP), integer
linear programming (ILP), or mixed integer linear programming

Authorized licensed use limited to: Penn State University. Downloaded on July 17,2023 at 01:34:57 UTC from IEEE Xplore.  Restrictions apply. 



2240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

Fig. 1. Complexity analysis for the joint caching and routing problem (1).

(MILP) problem, depending on the choices in constraints (1g)
and (1h)). We start by analyzing the complexity in solving (1)
optimally in various cases.

Complexity of IC-IR: It is easy to see that the optimization (1)
incorporates the multicommodity flow problem as a subproblem,
as even if the optimal caching and source selection decision
(x, r) is given, the remaining problem is still a multicommodity
flow problem. Specifically, each commodity corresponds to a
type of request (i, s), with a source v such that r(i,s)v = 1, a
destination s, and a demand λ(i,s), and we need to find a single
path for each commodity such that all the demands can be
satisfied at the minimum cost within the link capacities, which is
the minimum-cost unsplittable flow problem that is NP-hard [25],
[26]. Therefore, (1) under IC-IR is NP-hard.

Complexity of IC-FR: It has been shown that integral caching
is already NP-hard. Specifically, in the special case of cuv = ∞
(∀(u, v) ∈ E), (1) reduces to the MinCost-SR problem in [3],
which is known to be NP-hard due to a reduction from the 2-
Disjoint Set Cover Problem. Therefore, (1) under IC-FR remains
NP-hard.

Complexity of FC-FR: In this case, (1) becomes an LP, which
is polynomial-time solvable by existing LP algorithms (e.g.,
Karmarkar’s algorithm [27]).

Summary: Fig. 1 summarizes the complexity of the joint
caching and routing problem (1) in all the cases. Except for the
case of FC-FR, the problem is always NP-hard, which motivates
our search for efficient approximation algorithms.

IV. ALGORITHM DESIGN

We now study efficient algorithms for solving (1) approxi-
mately. Since FC-FR is polynomial-time solvable, we will focus
on the cases of integral caching and/or integral routing.

A. Approximation Under Unlimited Link Capacities

If the network is lightly loaded, i.e., each link has suf-
ficient capacity to serve all the demands (

∑
(i,s)∈R λ(i,s) ≤

min(u,v)∈E cuv), then the routing decision becomes easy. Specif-
ically, given the content placement in caches, we should always
serve each request (i, s) from the nearest (i.e., least-cost) node
storing the requested content. If the nearest node only stores
a fraction of (the coded sub-chunks of) the content, then we
should also retrieve from the second nearest node storing the
content and so on, until the request is fully satisfied. This is a
generalization of the route-to-nearest-replica (RNR) strategy in
ICN [3], and will be referred to as RNR in the sequel. The focus
is therefore on finding a good content placement. As explained
in Section II-D, if either routing or caching is limited by integer
constraints, then the optimal caching solution is integral. We

thus consider the problem of finding the optimal integral content
placement under RNR.

This problem has been considered in [3], which developed
a pseudo polynomial-time algorithm that achieves a constant-
factor approximation to the optimal solution. However, the
algorithm’s complexity is polynomial in the total number of
possible routing paths, which is generally exponential in the
network size.1 Below, we will develop a truly polynomial-time
algorithm that achieves the same constant-factor approximation.

1) Equivalent Formulation: The key in circumventing the
high complexity for considering all possible paths is to recognize
that only the least-cost paths between nodes may be used under
the optimal solution. Let wv→s denote the minimum routing
cost from node v to node s, and wmax be an upper bound
on the maximum wv→s over all v, s ∈ V . It is well-known
that (wv→s)v,s∈V and the associated paths can be computed
in polynomial time by shortest path algorithms (e.g., Dijkstra).
Given a content placement x and a source selection r, we define
a proxy objective function:

CRNR(x, r) :=
∑

(i,s)∈R
λ(i,s)

∑
v∈V

r(i,s)v (xviwv→s+(1−xvi)wmax),

based on which we formulate the following optimization:

min
x,r

CRNR(x, r) (2a)

s.t.
∑
v∈V

r(i,s)v = 1, ∀(i, s) ∈ R, (2b)

∑
i∈C

xvi ≤ cv, ∀v ∈ V, (2c)

xvi, r
(i,s)
v ∈ {0, 1}, ∀v ∈ V, (i, s) ∈ R. (2d)

As requesting content item i from a node v not storing it (i.e.,
xvi = 0) will incur a large cost wmax, the optimal solution to r
must only select the source for each request among the nodes
storing the requested content, and must select the source with
the least routing cost to the requester (i.e., RNR). Thus, the
optimal solution to (2) will minimize the cost in serving all the
requests (due to (2b)) subject to cache capacity constraints (2c)
and integer constraints (2d), which makes (2) a special case of
(1) under IC-IR when cuv = ∞ (∀(u, v) ∈ E).

Next, we convert the problem into an equivalent maximization
problem. Define a complementary objective function

FRNR(x, r) := C
(0)
RNR − CRNR(x, r) (3)

that represents the “cost saving” due to content placement x and
source selection r, where C

(0)
RNR := |V |wmax

∑
(i,s)∈R λ(i,s) is

a constant. It is easy to see that minimizing CRNR(x, r) is equiv-
alent to maximizing FRNR(x, r). As will be shown below, the
maximization problem accepts a constant-factor approximation.

2) Submodularity of Objective: As an explanation of why the
maximization ofFRNR(x, r) is easier to solve, we will show that

1The issue was addressed in [3] by heuristically selecting a polynomial
number of candidate paths (e.g., k shortest paths to the server), but the loss
of optimality due to ignoring the other possible paths was not addressed.
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FRNR can be written as a monotone submodular function [28] of
content placement. To this end, we rewriteFRNR as a set function:
for any X ⊆ V × C,

F̃RNR(X) := max
r s.t. (2b),(2d)

FRNR(x, r), (4)

wherexvi = 1 if (v, i) ∈ X andxvi = 0otherwise (∀v ∈ V, i ∈
C). This function has the following properties .

Lemma IV.1: The function F̃RNR(X) is monotone increasing
and submodular in X .

Under the set function representation, the maximization of
FRNR(x, r) subject to (2b)–(2d) is equivalent to

max
X⊆V ×C

F̃RNR(X) (5a)

s.t. |{i ∈ C : (v, i) ∈ X}| ≤ cv, ∀v ∈ V, (5b)

where the optimization of r has been incorporated into
F̃RNR(X). It is easy to see that the cache capacity constraint
(5b) is a matroid constraint [28].

There are generic polynomial-time approximation algorithms
for maximizing a monotone submodular function under matroid
constraints. Specifically, the greedy algorithm of iteratively ex-
panding the set X by adding an element (v, i) that maximally
increases the objective value achieves a 1/2-approximation [29].
A better approximation ratio of (1− 1/e) is achieved by the
randomized algorithm in [28], which cannot be further improved
under the value oracle model [30]. However, this randomized
algorithm has a complexity of O(n8) where n is the rank
of the matroid [28]. In our case, n =

∑
v∈V cv (total cache

capacity), which can be large, making this generic algorithm
computationally expensive.

Remark: Contrary to the claim in [3] that jointly optimizing
caching and routing decisions is not a submodular maximization
problem subject to matroid constraints, we have proved that
under proper formulation (i.e., (5)), the problem is a submodular
maximization problem under matroid constraints. Note that our
problem is equivalent to the (offline) joint caching and routing
problem in [3] in that the optimal content placement according
to (5) together with RNR solves the joint caching and routing
problem in [3] optimally.

3) Approximation Algorithm: Below, we will develop a
tailor-made algorithm for maximizing FRNR(x, r) subject to
(2b)–(2d) that achieves the same approximation ratio as the
generic algorithm in [28] at a much lower complexity. The
idea is to use pipage rounding [31]. Generally, to apply pipage
rounding, we need to answer two questions: (i) how to effi-
ciently compute a fractional solution that achieves a guaranteed
approximation to the optimal, and (ii) how to round the fractional
solution to an integral solution without degrading the objective
value. We now answer these questions in detail.

Auxiliary LP: We compute a fractional approximate solution
by replacing the non-concave objective function FRNR(x, r) by
a concave function that is easier to maximize.

Lemma IV.2: For any x and r satisfying xvi, r
(i,s)
v ∈

[0, 1] (∀v ∈ V, i ∈ C, (i, s) ∈ R), (1− 1/e)LRNR(x, r) ≤

FRNR(x, r) ≤ LRNR(x, r), where

LRNR(x, r) :=
∑

(i,s)∈R
λ(i,s)

∑
v∈V

wmax

·min

(
1, 1− r(i,s)v +

xvi(wmax − wv→s)

wmax

)
.

(6)

The new objective function LRNR(x, r) is concave and piece-
wise linear. By introducing an auxiliary variable z

(i,s)
v , we can

formulate the maximization of LRNR(x, r) subject to (2b), (2c),
and the relaxation of (2d) as an LP:

max
x,r,z

∑
(i,s)∈R

λ(i,s)

∑
v∈V

wmaxz
(i,s)
v (7a)

s.t. z(i,s)v ≤ 1, ∀(i, s) ∈ R, v ∈ V, (7b)

z(i,s)v ≤ 1− r(i,s)v +
xvi(wmax − wv→s)

wmax
,

∀(i, s) ∈ R, v ∈ V, (7c)

(2b), (2c), (7d)

xvi, r
(i,s)
v ∈ [0, 1], ∀v ∈ V, (i, s) ∈ R. (7e)

Due to the maximization and the constraints (7b)–(7c), z(i,s)v

must equal min
(
1, 1− r

(i,s)
v + xvi(wmax−wv→s)

wmax

)
under the op-

timal solution, making the objective function (7a) equal to
LRNR(x, r). As an LP, (7) is polynomial-time solvable. Solving
(7) gives a fractional solution (x̃, r̃) that maximizes LRNR and
hence achieves a (1− 1/e)-approximation in maximizing FRNR

by Lemma IV.2.
Pipage rounding: Given the fractional solution (x̃, r̃), we

round it to an integral solution while preserving FRNR by re-
peating the following step: As long as ∃x̃vi, x̃vj ∈ (0, 1), we
will update their values by

xvi = min(1, x̃vi + x̃vj), xvj = x̃vi + x̃vj − xvi (8)

if
∑

s:(i,s)∈R λ(i,s)r̃
(i,s)
v (wmax − wv→s) ≥

∑
s:(j,s)∈R λ(j,s)

r̃
(j,s)
v (wmax − wv→s), and

xvj = min(1, x̃vi + x̃vj), xvi = x̃vi + x̃vj − xvj (9)

otherwise. This rounding scheme has the following property.
Lemma IV.3: Given a possibly fractional solution (x̃, r̃) sat-

isfying (2b), (2c), and (7e), repeatedly applying (8)–(9) will
construct an integral solution x in O(|V |2|C|) time that satisfies
(2c), (2d), and FRNR(x, r̃) ≥ FRNR(x̃, r̃).

Proposed algorithm: The entire algorithm is summarized in
Algorithm 1, where line 1 prepares parameters for the auxiliary
LP (7), line 2 solves the LP for a fractional solution, line 3
applies pipage rounding, and line 4 computes the corresponding
source selection by serving each request from the nearest node
storing the requested content, i.e., RNR. The performance of
Algorithm 1 is guaranteed as follows.

Theorem IV.4: Algorithm 1 has a complexity of O(|V ||E|+
|R|2.5|V |2.5) and produces a feasible solution (x, r) such that
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Algorithm 1: Integral Caching and Source Selection under
RNR.

input: Network topology G = (V,E), link costs
(wuv)(u,v)∈E , cache capacities (cv)v∈V , content
catalog C, request rates (λ(i,s))(i,s)∈R

output: Integral caching decision x and source selection r
1: compute pairwise least costs (wv→s)v,s∈V and the

maximum pairwise cost wmax;
2: solve the LP (7) for a fractional solution (x̃, r̃);
3: round x̃ to an integral solution x by (8)–(9);
4: compute an integral r based on x using RNR;

FRNR(x, r) ≥ (1− 1/e)FRNR(x
∗, r∗), where (x∗, r∗) is the op-

timal solution to (2).
Remark: Although a similar approach was taken in [3], the

solution therein enumerates candidate paths and thus can only
consider a subset of all possible paths to achieve a polynomial
complexity. In contrast, our algorithm effectively optimizes over
all possible paths (while maintaining a polynomial complexity),
and can thus significantly outperform [3] (see Fig. 5).

4) A Special Case: Consider now the special case where a
subset U of nodes are pure requesters (not caching anything),
and another subset H of nodes are pure caches (not requesting
anything). In this case, it suffices to model the network as a
bipartite graph G̃ = (H,U, Ẽ), where the logical link (h, u) ∈
Ẽ represents the least-cost path from h to u, with cost wh→u.
We can ignore how these least-cost paths traverse the underlying
network as the links have unlimited capacities.

This reduces our problem to the FemtoCaching problem in
wireless networks [32], where nodes generating requests are
one-hop away from caches deployed at the network edge. In
the further special case where except for one node h0 ∈ H
(that denotes the origin server), all the cache → requester paths
have equal cost w1 with w1 < minu∈U wh0→u, [32] developed
a pipage-rounding-based algorithm with an approximation ratio
of2 (1− 1/e), and a complexity similar to solving an LP with
(|U |+ |H|)|C| variables and constraints. In this sense, we have
shown that the same performance guarantee can be achieved for
a general cache network with arbitrary routing costs, as long as
the links are uncapacitated. The cost we pay for such generality
is complexity: instead of solving an LP with (|U |+ |H|)|C| =
O(|V ||C|) variables and constraints as in [32], Algorithm 1
needs to solve an LP with O(|V ||R|) = O(|V |2|C|) variables
and constraints.

B. Bicriteria Approximation Under Binary Cache Capacities

We see from Section IV-A that the routing decision becomes
trivial (i.e., RNR) when the link capacity constraints are re-
moved. We now consider another special case where the caching
decision becomes trivial. Specifically, suppose that cv = |C| for
v ∈ Vs ⊂ V , and cv = 0 for the rest. Then each node v ∈ Vs will
store the entire catalog and each v ∈ V \ Vs will store nothing.

2The precise approximation ratio is 1− (1− 1
d )

d, where d :=
maxu∈U deg(u)− 1 [32], which converges to 1− 1/e as d gets large.

Fig. 2. Auxiliary graph G′ that augments G by adding a virtual source vs
connected to all real sources in Vs.

This models scenarios with predetermined, geographically dis-
tributed backup servers (i.e., in CDNs).

1) Equivalent Formulation: We will show that in this case,
the joint optimization of source selection and routing is equiv-
alent to a single-source routing problem in an auxiliary graph.
Consider the auxiliary graph G′ that is constructed by adding
to G a new node vs and a new link (vs, v) for every v ∈ Vs,
as illustrated in Fig. 2. We will refer to vs as the virtual source
and (vs, v) as a virtual link. Let E ′ := E ∪ {(vs, v) : v ∈ Vs}
denote the link set for G′. Assign to each virtual link a zero cost
and an unlimited capacity. Then our problem is equivalent to a
single-source routing problem in G′ as stated below.

Lemma IV.5: Under the content placement xvi = 1 for all
v ∈ Vs, i ∈ C and xvi = 0 otherwise, minimizing the cost in
serving all the requests in G by optimizing source selection r
and routing f is equivalent to minimizing the cost in serving
the same requests in G′ by optimizing the routing f ′ from vs to
content requesters.

2) Bicriteria Approximation Algorithms: Under fractional
routing (which implies fractional source selection) in G, the
corresponding single-source routing problem in G′ is easily
solvable by an LP (e.g., the LP relaxation of (10)). Hence, we
focus on the case of integral routing (and integral source se-
lection), in which case the corresponding single-source routing
problem in G′ is:

min
f ′

∑
(i,s)∈R

λ(i,s)

∑
(u,v)∈E

wuvf
′(i,s)
uv (10a)

s.t.
∑

(i,s)∈R
λ(i,s)f

′(i,s)
uv ≤ cuv, ∀(u, v) ∈ E, (10b)

∑
w:(u,w)∈E

f ′(i,s)
uw −

∑
w:(w,u)∈E

f ′(i,s)
wu = 1u∈Vs

f ′(i,s)
vsu

− 1u=s,

∀(i, s) ∈ R, u ∈ V, (10c)∑
v∈Vs

f ′(i,s)
vsv

= 1, ∀(i, s) ∈ R, (10d)

f ′(i,s)
uv ∈ {0, 1}, ∀(i, s) ∈ R, (u, v) ∈ E′, (10e)

known as the minimum-cost single-source unsplittable flow
problem (MSUFP) [33]. Under the conversion of f (i,s)

uv = f ′(i,s)
uv

for all (i, s) ∈ R and (u, v) ∈ E, and r
(i,s)
v = f ′(i,s)

vsv
for all

(i, s) ∈ R and v ∈ Vs, it is easy to see that (10) is a special
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case of (1) under integral routing, when cv = |C| for all v ∈ Vs

and cv = 0 for all v ∈ V \ Vs.
For ease of presentation, we define MSUFP using simpler

notations as follows.
Definition 1: Given a graph G = (V,E) with capacity ce

and cost we associated with each link e ∈ E, and commodities
i = 1, . . . , n, each with source s, destination di, and demand λi,
MSUFP aims at finding an unsplittable flow satisfying all the
demands within the link capacities at the minimum cost, i.e., a
set of paths {pi}ni=1 such that routing commodity i on pi satisfies
the demands while satisfying

∑
i:e∈pi

λi ≤ ce (∀e ∈ E), and
achieves the minimum cost measured by

∑n
i=1 λi

∑
e∈pi

we

among all the feasible solutions.
MSUFP is NP-hard [25]. Notable efforts have been devoted

to designing approximation algorithms, which generally start
from an initial splittable flow f̃ (i.e., fractional routing) and
then round it into an unsplittable flow f . It has been shown
in [34] that in the worst case, rounding a splittable flow that
satisfies the link capacity constraints into an unsplittable flow
will violate the capacity of some link by an amount arbitrar-
ily close to the maximum demand. Therefore, existing algo-
rithms focus on obtaining bicriteria approximation defined as
follows.

Definition 2: A solution f to MSUFP is a bicriteria (α, β)-
approximation if: (i) the total load on each link imposed by f is
within α times its capacity, and (ii) the total cost incurred by f
is within β times the optimal cost.

Despite extensive studies, existing results on MSUFP are far
from satisfactory. Under arbitrary demand, the best known bicri-
teria approximation ratio is (3 + 2

√
2, 1) [33]. If the maximum

demand is within the minimum link capacity, the best known
ratio is (3, 1) [33]; under the same condition, [35] proved that
for any ε > 0, there is no bicriteria (2− ε, 1)-approximation
algorithm for MSUFP unlessP = NP . These results imply that
if we use the algorithms therein to solve (10), some link may
carry a load that is three times its capacity, which will cause
significant congestion.

To address this issue, we will show a better approximation
algorithm in the scenario where the maximum demand is much
smaller than the minimum link capacity, i.e.,maxi∈{1,...,n} λi =:
λmax � cmin := mine∈E ce. This scenario models cases where
the network serves a large number of users with a large catalog,
but each user only has a small demand for each item in the
catalog. In this case, we will provide a polynomial-time algo-
rithm that achieves no more than the optimal cost, while causing
no more than ε congestion on each link for an arbitrarily small
ε > 0. We will present the main results here and defer further
explanations to Appendix B of the supplementary file, available
online.

Subroutine: The basis of our solution is an algorithm devel-
oped in [33], which converts a splittable flow to an unsplittable
flow with the following properties.

Lemma IV.6 ([33]): Given MSUFP with demands λi =
λmin2

qi (i = 1, . . . , n) for qi ∈ N (natural numbers includ-
ing zero) and 0 = q1 ≤ q2 ≤ · · · ≤ qn, and a splittable flow
f satisfying all the demands, [33, Algorithm 2] outputs an

Algorithm 2: Bicriteria Approximation for MSUFP.

unsplittable flow that routes each commodity i on a sin-
gle path pi in O(n|V |+ |E|qn + |V ||E|) time, such that (i)∑n

i=1 λi

∑
e∈pi

we is no more than the cost off , and (ii)∀e ∈ E,
if ie := arg maxi:e∈pi

λi, then
∑

i�=ie:e∈pi
λi < f(e), the total

flow on link e under f .
Proposed algorithm: Using [33, Algorithm 2] as a subroutine,

we develop a three-step algorithm for arbitrary demands (λi)
n
i=1

in Algorithm 2. First, we compute by LP an optimal splittable
flow f that satisfies these demands within the link capacities
with the minimum cost (line 1). Second, using a given parameter
K ∈ N, we round each demand λi to3

λ̄i :=

{
λmax2

�K log(λi/λmax)�/K if λi < λmax,
λmax/2

1/K if λi = λmax.
(11)

The rounded demand satisfies λi2
−1/K ≤ λ̄i ≤ λi. We then

reduce the flow f along the most expensive paths to a new
splittable flowf̄ satisfying demands (λ̄i)

n
i=1 (lines 2–4). Third,

we partition the commodities {1, . . . , n} into K subsets:

Sj : = {i ∈ {1, . . . , n} : −�K log(λi/λmax)�
K

+
j

K
∈ N},

j = 0, . . . ,K − 1. (12)

We then splitf̄ into flowsf̄ j (j = 0, . . . ,K − 1) such thatf̄ j

satisfies demands (λ̄i)i∈Sj
(line 5), and convertf̄ j into an unsplit-

table flow by [33, Algorithm 2], which routes each commodity
i (i ∈ Sj) on a path pi (lines 6–7). The final solution is to route
the original demand λi on path pi for each i = 1, . . . , n (line 8).

The performance of Algorithm 2 is guaranteed as follows.
Theorem IV.7: Given MSUFP with demands λmin := λ1 ≤

· · · ≤ λn =: λmax, Algorithm 2 computes an unsplittable

3The log here denotes base-2 logarithm.
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flow that serves demand λi by path pi (i = 1, . . . , n) in
O(n2.5(|V |+ |E|)2.5 +K|E|(log( λmax

λmin
) + |V |)) time, such

that (i)
∑n

i=1 λi

∑
e∈pi

we is no more than the minimum cost,

and (ii)
∑

i:e∈pi
λi <

21/K

2(21/K−1)
λmax + 21/Kce, ∀e ∈ E.

Remark: Algorithm 2 extends the solution in [33] (called
variant of Algorithm 3), which addressed a special case of
K = 2. When λmax � cmin, choosingK = �1/ log(1 + ε)� for
a small ε > 0 implies that the solution given by Algorithm 2
will achieve the optimal cost while incurring a load on each link
that is within (1 + ε) times its capacity, i.e., giving a bicriteria
(1 + ε, 1)-approximation. Applying this algorithm to (10) will
then give an integral source selection and routing solution to
(1) when the catalog is replicated over a given subset of nodes
Vs, which incurs no more than the optimal cost and exceeds the
capacity of any link by at most a factor of ε.

While the case of λmax � cmin was considered in [37],
which proposed a different algorithm, the performance of that
algorithm was not analyzed rigorously. To our knowledge, Algo-
rithm 2 is the first algorithm achieving (1 + ε, 1)-approximation
for MSUFP.

C. Heuristics Under General Link/Cache Capacities

Given our experiences in solving the special cases, we propose
to solve the general case with arbitrary link/cache capacities by
alternatingly optimizing content placement and routing (includ-
ing source selection).

1) Approximation Algorithm for Content Placement: Con-
sider the problem of integral content placement under a given
solution (r, f) to source selection and routing. In the case
of integral routing, this problem has been studied in [38], for
which a (1− 1/e)-approximation algorithm based on pipage
rounding was proposed. Below we show how to achieve the
same approximation ratio in the case of fractional routing.Under
source selection r and routing f , let P (i,s)

r,f denote the set of

cycle-free paths used to serve requests of type (i, s) and λ
(i,s)
p

(∀p ∈ P
(i,s)
r,f ) the rate of requests served by path p. Specif-

ically, given a possibly fractional link-level routing decision
f := (f

(i,s)
uv )(i,s)∈R,(u,v)∈E , the corresponding path-level rout-

ing decision ((f
(i,s)
p )

p∈P (i,s)
r,f

)(i,s)∈R can be computed as in [36]

in O(|R||V ||E|) time (f (i,s)
p : the fraction of type-(i, s) requests

served by path p), and then λ
(i,s)
p = λ(i,s)f

(i,s)
p . This conversion

also guarantees that |P (i,s)
r,f | ≤ |E| (∀(i, s) ∈ R) (see the proof

of Theorem IV.7 for explanation). Let |p| denote the number of
nodes on path p and pi (i = 1, . . . , |p|) the i-th node from the
source. Then the cost of serving requests using the paths and rate
allocation specified by (r,f) and an integral content placement
x is

Cr,f (x) :=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)
p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·
k−1∏
k′=0

(1− xp|p|−k′ i), (13)

because the response to request (i, s) along path p needs to
traverse link (p|p|−k, p|p|−k+1) if and only if no node closer
to the requester (at node p|p|) than node p|p|−k has content i,

i.e.,
∏k−1

k′=0(1− xp|p|−k′ i) = 1. This is a generalization of the
formulation in [38], which only considers the special case of
|P (i,s)

r,f | = 1 (i.e., integral routing). Note that to be consistent

with previous sections, we consider each p ∈ P
(i,s)
r,f to be a

response path, instead of a request path as in [38].
The solution is based on similar ideas as in Algorithm 1. First,

the minimization of cost (13) is converted into an equivalent
maximization of cost saving, defined as

Fr,f (x) := Cr,f (0)− Cr,f (x)

=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)
p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·
(
1−

k−1∏
k′=0

(1− xp|p|−k′ i)

)
. (14)

Second, the nonconcave objective function (14) is replaced by a
piecewise-linear concave objective function:

Lr,f (x) :=
∑

(i,s)∈R

∑
p∈P (i,s)

r,f

λ(i,s)
p

|p|−1∑
k=1

wp|p|−kp|p|−k+1

·min

(
1,

k−1∑
k′=0

xp|p|−k′ i

)
, (15)

which can be shown to satisfy (1− 1/e)Lr,f (x) ≤ Fr,f (x) ≤
Lr,f (x) by applying the Goemans-Williamson inequality [38],
[39] as in Lemma IV.2. Using auxiliary variables to represent
min(1,

∑k−1
k′=0 xp|p|−k′ i) as in (7), the maximization of (15) under

cache capacity constraints and xvi ∈ [0, 1] (∀v ∈ V, i ∈ C) can
be written as an LP and solved efficiently. Finally, if the solution
x̃ is fractional, then a pipage rounding scheme similar to (8)–(9)
can be used to round it into an integral solution x such that
Fr,f (x) ≥ Fr,f (x̃).

Together, these steps produce an integral content placement x
that achieves (1− 1/e)-approximation in terms of maximizing
Fr,f . That is, compared to the content placement x∗

r,f that
maximizes (14), x satisfies Fr,f (x) ≥ (1− 1/e)Fr,f (x

∗
r,f ).

2) Algorithms for Source Selection and Routing: Given an
integral content placement x, we can reduce the joint opti-
mization of source selection r and routing f to a pure routing
problem by a construction similar to Lemma IV.5. Specifi-
cally, let V x

i := {v ∈ V : xvi = 1} be the set of nodes storing
content i under placement x (∀i ∈ C). We can construct an
auxiliary graph Gx := (V ∪ {vi}i∈C , E ∪⋃i∈C{(vi, v) : v ∈
V x
i }), where vi is the virtual source for content i that is con-

nected to each of the real sources for content i via a virtual link
that has a zero cost and an unlimited capacity. Then by the same
arguments as in Lemma IV.5, we see that minimizing the total
routing cost in G by a joint optimization of source selection and
routing under content placement x is equivalent to minimizing
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the total routing cost in Gx by optimizing the routing from the
virtual source vi of each content to its requesters.

The resulting routing problem in Gx is known as the
minimum-cost multiple-source splittable/unsplittable flow prob-
lem (MMSFP/MMUFP) depending on whether fractional rout-
ing is allowed. Under fractional routing, the corresponding
problem (MMSFP) can be solved via LP. If routing must be
integral, then the corresponding problem (MMUFP) is NP-
hard [26]. A number of heuristics for MMUFP, e.g., greedy
and LP relaxation with randomized rounding, have been pro-
posed [26]. The optimal solution can also be computed by
the branch-and-price-and-cut algorithm [40], although with an
exponential complexity. Remark: In contrast to the bicriteria
approximations for MSUFP (see Section IV-B2), approximating
MMUFP is much harder. This is because in the single-source
case, if all demands and link capacities are integer multiples
of α for any α > 0, then we can compute in polynomial time
a minimum-cost flow whose value on each link is an integer
multiple of α [33], but in the multiple-source case, computing
such a flow is NP-hard [41]. To our knowledge, how to solve
MMUFP efficiently with approximation guarantee remains an
open problem.

3) Overall Algorithm: Based on the solutions for the sub-
problems in Sections IV-C1–IV-C2, we propose an algorithm
that alternatingly optimizes x and (r, f) as follows. Starting
from an arbitrary feasible solution (x(0), r(0), f (0)), repeat the
following steps for t = 1, 2, . . . until there is no more improve-
ment in cost or congestion:

1) compute x(t) by maximizing Fr(t−1),f (t−1)(x) subject to
cache capacity constraints;

2) compute (r(t), f (t)) by solving MMSFP (under fractional
routing) or MMUFP (under integral routing) in Gx(t)

.
After each iteration, we only retain the new solution if it has

a lower cost than the solution from the previous iteration.
4) Limitation: The above approach effectively treats the joint

caching and routing problem (1) as a two-player cooperative
game: one player optimizes the content placement x and the
other player optimizes the source selection and routing (r, f).
The alternating optimization algorithm is designed to find a
Nash Equilibrium (NE), where neither player can improve the
performance by unilaterally changing its decision. However, this
game can have many NEs, some of which can be arbitrarily
worse than the optimal solution, as shown below.

Proposition IV.8: The algorithm in Section IV-C3 has an
unbounded approximation ratio, even if each of the steps
(i.e., optimizing x(t) based on (r(t−1), f (t−1)) and optimizing
(r(t), f (t)) based on x(t)) is solved optimally.

Remark: Proposition IV.8 indicates that sometimes a locally
suboptimal caching/routing decision is needed to converge to-
wards the optimal solution for joint caching and routing. It re-
mains open how to make such suboptimal decisions such that the
overall solution achieves a guaranteed approximation, which is
left to future work. Meanwhile, despite this negative result on the
worst-case performance, the alternating optimization algorithm
has shown very good performance in comparison with the state
of the art and quick convergence in our evaluations based on real
topology and request traces (see Fig. 7–11).

V. EXTENSION TO HETEROGENEOUS CONTENT SIZES

Although caching equal-sized chunks as we consider so far is a
common assumption in the literature (e.g., [3], [12], [21] and ref-
erences therein), it implies additional processing at application
layer to assemble the equal-sized chunks into the requested files,
which generally have heterogeneous sizes. A question of interest
is thus how to solve the joint caching and routing problem if we
directly cache the files.

A. Extending Problem Formulation

To model heterogeneous file sizes, we allow each content
item i ∈ C to have an arbitrary size of bi bits. Accordingly, we
measure the cache size cv at node v ∈ V in bits, the capacity cuv
of link (u, v) ∈ E in bits per unit time, and the demand λ(i,s) of
type (i, s) ∈ R in bits per unit time. We also interpret the cost
wuv of link (u, v) ∈ E as the cost of moving one bit over the
link.

Under the above model, the problem of minimizing the rout-
ing cost under link and cache capacity constraints can still be
formulated as in (1), except that the cache capacity constraint
(1f) is changed into:∑

i∈C
xvibi ≤ cv, ∀v ∈ V. (16)

The generalized problem is no easier than the original problem
that assumes bi ≡ 1 (∀i ∈ C), and remains an LP in the case of
FC-FR. Hence, the complexity analysis in Section III remains
applicable.

B. Revisiting Algorithm Design

1) Case of Binary Cache Capacities: In the special case that a
subset of nodes can store the entire catalog and the rest store none
as assumed in Section IV-B, Algorithm 2 remains applicable
with the same performance guarantee.

2) Case of Unlimited Link Capacities: Under unlimited link
capacities as assumed in Section IV-A, Algorithm 1 is no
longer applicable. The reason is that the rounding scheme in
Lemma IV.3 hinges on the ability to swap equal fractions of
different items at a node without exceeding the cache capacity,
which is generally infeasible if the items have heterogeneous
sizes. Nevertheless, using the objective function F̃RNR(X) de-
fined in (4), we can reformulate the problem as

max
X⊆V ×C

F̃RNR(X) (17a)

s.t.
∑

i∈C:(v,i)∈X
bi ≤ cv, ∀v ∈ V. (17b)

We know from Lemma IV.1 that F̃RNR(·) is monotone and
submodular. Moreover, the solution space of (17) also has a
desirable property as shown below.

Definition 3 ([42]): Let A be a universe of elements and I ⊆
2A a collection of subsets of A.

1) The pair (A, I) is called an independence system if: (i)
∅ ∈ I, and (ii) if S1 ∈ I and S2 ⊆ S1, then S2 ∈ I.

2) Given an independence system (A, I) and a set S ⊆ A, a
maximal subset of S that is in I is called a basis of S. The
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rank r(S) is the cardinality of the largest basis of S, and
the lower rank ρ(S) is the cardinality of the smallest basis
ofS. The independence system is called a p-independence
system if maxS⊆A

r(S)
ρ(S) ≤ p.

Lemma V.1: For I := {X ⊆ V × C : X satisfies (17b)},
(V × C, I) is a p-independence system for p = �bmax/bmin�,
where bmax/bmin is the maximum/minimum item size.

Combining Lemmas IV.1 and V.1 yields the following result.
Theorem V.2: Greedy content placement (i.e., iteratively ex-

panding X by adding an element (v, i) that achieves the max-
imum F̃RNR(X ∪ {(v, i)})) achieves 1/(1 + p)-approximation
for (17), where p = �bmax/bmin�.

Remark: In contrast to the (1− 1/e)-approximation in the
case of equal-sized items, caching items of arbitrary sizes has a
worse approximation ratio. This is essentially the cost of storing
arbitrary-sized files instead of equal-sized chunks.

3) General Case: In the general case with arbitrary
link/cache capacities, the heterogeneity in item sizes only af-
fects the content placement subproblem. For reasons similar to
Section V-B2, the (1− 1/e)-approximation algorithm in [38]
no longer applies. However, we can show that the equivalent
objective function F̃r,f (X) is still monotone and submodular.

Lemma V.3: The function F̃r,f (X) := Fr,f (x) in (14),
where xvi = 1 if and only if (v, i) ∈ X , is monotone increasing
and submodular in X .

This result together with Lemma V.1 implies that when for-
mulated as a cost saving maximization problem max F̃r,f (X)
s.t. (17b), the content placement subproblem is again a submod-
ular maximization subject to a p-independence constraint, for
which the greedy algorithm achieves 1/(1 + p)-approximation
as shown in the proof of Theorem V.2. Given a content place-
ment, the source selection and routing subproblem can still
be solved as MMSFP/MMUFP as in Section IV-C2. Thus, we
can still apply the alternating optimization algorithm in Sec-
tion IV-C3.

VI. PERFORMANCE EVALUATION

We evaluate our solutions against benchmarks in the scenario
of edge caching, where content items are cached at locations
within/near users’ access networks. Edge caching has been
widely used by large content providers like Google [43] and
distributors like Akamai [44], and has been shown to achieve
most of the benefits of ICN [45].

Simulation setting: To simulate edge caching, we use an Inter-
net Service Provider (ISP) topology called Abovenet from [46]
to model the network, where a degree-1 node is designated as
(the gateway to) the origin server permanently storing all the
items, and a set Ve of low-degree nodes (with degree ≤ 3)
are designated as edge nodes, which receive requests from
users and host caches. We assume that each cache can store
ζ items. The other nodes are internal routers that only forward
requests/responses. See Fig. 3 for the topology.

As the origin server is usually much farther away from users
than edge caches, we select the cost for the outgoing link of
the origin server randomly from [100, 200], and the costs for
the other links randomly from [1,20]. These costs can represent

Fig. 3. Abovenet topology; : origin server, : edge nodes, : internal nodes.

TABLE I
STATISTICS OF YOUTUBE VIDEOS IN EVALUATION

any additive metric (see examples in Section II-A); the choice
of cost measure is not our focus. In [1], we have conducted
extensive synthetic simulations based on requests generated
according to the Zipf distribution as in [3]. Here, we will simulate
more realistic content demands based on traces. To this end, we
collected #views per hour of the top 12 YouTube videos over
100 consecutive hours between 11/14/2021 and 11/18/2021; see
Table I for the statistics. Additional 550 hours of #views of the
top 300 videos were collected for training a demand predictor.
We use the collected data to perform simulations at two different
levels:
� Chunk level (with homogeneous-sized items): Each video

is divided into 100-MB chunks to be stored in the cache
nodes, and the application layer will assemble the equal-
sized chunks into the video files that are requested.

� File level (with heterogeneous-sized items): Each video is
treated as a single item with a heterogeneous size, and
stored in its entirety in the cache nodes.

We use the views of these popular videos to represent content
requests and randomly distribute the requests for each video
among the edge nodes. Following the setting in [3] for topology
with a similar size as Abovenet, we set |C| = 10 and ζ = 2
by default for file-level simulation. Correspondingly, we set
|C| = 54 and ζ = 12 for chunk-level simulation to represent
the same set of videos and the same cache size (on the average).
Both parameters will be varied later. We give each link a default
capacity of κ, which is set to 0.7% of the total request rate.
In our traces, the top-10 videos have a total request rate of
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Fig. 4. Numbers of views per hour for top-12 YouTube videos; solid: ground
truth, dashed: prediction.

1949666.52 chunks/hour, which equals 381.1902 Gbps. This
leads to a default link capacity of 13715.796 chunks/hour, or
roughly κ = 3 Gbps. We will vary the default link capacity
later. To ensure feasibility, we augment link capacities along
a cycle-free path from the origin server to each edge node so
that all the requests can be served by the origin server as a last
resort. Our evaluation focuses on the most challenging case of
IC-IR. Results are averaged over 100 Monte Carlo runs.

The above setting simulates a real-world scenario, where the
network provider adjusts caching and routing decisions on an
hourly basis based on the predicted demand. To enable this, we
apply Guassian process regression (GPR) from the scikit-learn
library [47], with white noise, periodic, and radial-basis function
kernels and maximum marginal likelihood fitting, to predict the
request rates for the next hour based on a history of at least 550
hours.6 See the results in Fig. 4. We note that this prediction
method is only used to evaluate the proposed caching/routing
algorithms under realistic demand prediction; demand predic-
tion is not the focus of this work, and other prediction methods
can be applied.

Simulation results: First, in the special case of unlimited link
capacities, we compare our proposed algorithm (Algorithm 1
for chunk-level simulation and greedy algorithm for file-level
simulation) with the solution in [3] (‘k shortest paths’) and the
content placement algorithm in [38] based on shortest path rout-
ing (‘shortest path’). We configure the solution in [3] according
to its recommendation, by constructing k shortest paths from the
server to each edge node as the candidate paths with k = 10 by
default. We have the following observations based on the results
in Fig. 5. In the case of homogeneous item sizes (i.e., chunk-level
simulation), (i) our algorithm achieves a substantially lower
routing cost than the state-of-the-art solutions in [3], [38], and
(ii) the advantage remains as the number of candidate paths
for [3] increases. This is because [3], [38] both predetermine the
candidate paths based on the server’s location, hence not fully
utilizing the caches. In the case of heterogeneous item sizes (i.e.,
file-level simulation), (i) the benchmarks from [3], [38] appear
to achieve a lower routing cost than our algorithm, but (ii) their
content placement solutions are actually infeasible as shown by
the plots of the maximum cache occupancy. This is because the
pipage rounding scheme used in [3], [38] swaps equal fractions

6To accommodate the training time, we perform prediction for five hours at
a time, and then retrain the model using the cumulative history.

Fig. 5. Case of unlimited link capacities: first row – chunk-level simulation,
second row – file-level simulation under varying cache capacity, third row –
file-level simulation under varying #candidate paths (light: true demand; dark:
predicted demand).

of different items to minimize cost, which can exceed the cache
capacity when items have different sizes. The above observations
hold regardless of whether the algorithms run on the predicted
demand or the true demand (all the performances are evaluated
based on the true demand).

Next, we consider the special case of binary cache capacities,
where one of the edge nodes (in addition to the server) stores
all the items and the rest store none. As our problem reduces
to MSUFP in this case, we compare our Algorithm 2, with
parameterK tuned to minimize congestion under the default link
capacity of 15 Gbps (shown by the varying-K plots in Fig. 6),
with the state-of-the-art MSUFP algorithm in [33], which is a
special case of our algorithm with K = 2. As benchmarks, we
also compare with the splittable flow and the solution by [3],
which routes each request to the nearest replica (‘RNR’). As
some of the algorithms may exceed the link capacities, we
evaluate congestion in addition to routing cost, measured by the
maximum load-to-capacity ratio over all the links. The results in
Fig. 6 show that: (i) RNR can cause severe congestion (it exceeds
link capacities by up to 51 times; the congestion plots have been
truncated for better visibility of other results), (ii) compared to
the state-of-the-art algorithm in [33] (‘K = 2’), Algorithm 2
with a larger K can substantially reduce the congestion while
achieving/beating the minimum routing cost achievable without
congestion (which is lower-bounded by the cost for ‘splittable
flow’), and (iii) compared to serving each video as a whole,
serving it in chunks can substantially reduce the routing cost
(by 5–6 times) without worsening the congestion. The second
observation is because a larger K leads to smaller errors when
rounding the demands and thus less congestion when serving
the actual demands over paths selected based on the rounded
demands. The third observation is because chunking the videos
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Fig. 6. Case of binary cache capacities: top two rows – chunk-level simulation,
bottom two rows – file-level simulation (light: true demand; dark: predicted
demand).

effectively allows each video to be served to each requester via
multiple paths (one per chunk), which provides more flexibility
than serving each video in its entirety via a single path.

Finally, we consider the general case with limited cache
and link capacities. We implement versions of the alternating
optimization algorithm proposed in Section IV-C3 (‘alternat-
ing’) that solve content placement by pipage rounding (chunk-
level simulation) or greedy algorithm (file-level simulation),
and MMUFP by LP relaxation with randomized rounding. We
compare them with the solution in [38] based on shortest path
routing (‘SP’), a variation of [3] with the shortest path as the
only candidate path (‘SP + RNR’), and the solution in [3] with
its recommended way of constructing candidate paths as the
k = 10 shortest paths (‘k-SP + RNR’). The results in Figs. 7
and 8 show the following. For chunk-level caching and routing,
(i) our algorithm significantly outperforms [3], [38] in both cost
and congestion, and (ii) while ‘SP + RNR’ achieves a lower cost,
it causes severe congestion. For file-level caching and routing, (i)
none of the benchmarks is feasible as their content placements
substantially exceed the capacity of at least one cache, and
(ii) although our algorithm maintains feasibility with respect to
cache capacities, it incurs a notably higher level of congestion
and a higher routing cost than what is achieved in chunk-level
simulation. Our algorithm has also exhibited quick convergence
(within 10 iterations) in all the evaluated cases.

In addition to the quality of the solutions, We have also evalu-
ated the computation efficiency of the algorithms as measured by

Fig. 7. General case under varying cache capacity: first row – chunk-level
simulation, second and third row – file-level simulation (light: true demand;
dark: predicted demand).

Fig. 8. General case under varying link capacity: first row – chunk-level
simulation, second and third row – file-level simulation (light: true demand;
dark: predicted demand).

their average execution times under the default parameter setting
in the most computationally challenging case of IC-IR. The
results, shown in Appendix C of the supplementary file, available
online, indicate that the proposed algorithms are sufficiently fast
to be applied to adjust caching and routing decisions on a regular
basis.

Summary of results: To facilitate comparison, we summarize
the qualitative observations from the chunk-level simulation
under IC-IR in Table II, which compares our proposed solutions
(in bold) with the benchmarks. The summary clearly highlights
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TABLE II
SUMMARY OF PERFORMANCE EVALUATION RESULTS

the advantage of our solutions in terms of lower cost and/or lower
congestion. While these conclusions are obtained under a fixed
setting, we have validated them under other settings as shown
in Appendix D of the supplementary file, available online.

VII. CONCLUSION

We studied the fundamental problem of joint caching and
routing in a cache network with arbitrary topology, with the
objective of minimizing routing cost under link/cache capacity
constraints. After characterizing the complexity of this problem
in all the cases, we developed polynomial-time algorithms that
achieved guaranteed approximations in important special cases
and superior empirical performance in the general case. While
our focus was on one-shot optimization for a given set of
demands, our solution was shown to work well in an online
setting when combined with reasonable demand prediction.
Meanwhile, our negative result also indicates further room of
improvement for the worst-case performance in the general case.
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