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Abstract—In recent years, there has been a growing trend in
power consumers’ adoption of renewable energy sources such as
wind and solar. The energy industry is currently undergoing
a phase of innovation to integrate these sources into smart
grids. However, the deployment of control networks poses a
significant challenge in achieving effective monitoring, control, and
data exchange functionalities. The emergence of fifth-generation
(5G) networks provides a cost-effective opportunity to enhance
capabilities in this regard. By leveraging multi-numerology
techniques within the 5G framework, it becomes possible to
efficiently share communication infrastructure with other services.
This approach offers numerous advantages, including enhanced
flexibility, quality of service differentiation, interference mitigation,
scalability, and compatibility with existing communication systems.

This paper focuses on the utilization of multi-numerology
techniques to optimize resource allocation and improve the overall
efficiency of smart grid operations. We consider Mobile Virtual
Network Operators as power companies while the nodes represent
sensors and actuators deployed in the power grid. To address
the challenge of resource allocation, we propose a novel scheme
that utilizes multi-numerology Radio Access Network (RAN)
network slicing. This scheme aims to maximize observability and
controllability within power distribution systems. We approach
the problem by characterizing its fundamental complexity and
developing suitable heuristics.

Through extensive simulations conducted on the IEEE test
feeders, we demonstrate the superior performance of our proposed
algorithms in effectively balancing initially unbalanced power
distribution systems. These findings highlight the significant
benefits of employing multi-numerology techniques in optimizing
resource allocation and enhancing the overall efficiency of smart
grid operations such as demand management and load balancing.

Index Terms—5G, network slicing, multi numerology, SCADA
system, power distribution system

I. INTRODUCTION

The smart grid is a modernized electrical grid equipped with
communication and IT systems that enable the monitoring of
power flows from generation to consumption points, as well as
the automation of power flow control and load curtailment
to match power generation in real-time or near real-time.
These communication, monitoring, and supervision systems
are essential for managing power flows from diverse sources in
the smart grid. Furthermore, as renewable and variable power
sources are integrated into the electrical grid, the control for
the smart grid is becoming more critical. To fully realize the
potential of the smart grid, control networks must span the
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entire power system, including power generation, transmission,
transformation, distribution, and consumption. According to [1],
95% of blackouts occur within the last 5 kilometers of the
power grid, specifically in the distribution and consumption part.
This particular area presents a significant challenge in the devel-
opment of smart grid technology. Therefore, this work focuses
on developing a control network for power distribution and
consumption, which is crucial for optimizing the efficient use of
renewable energy sources, ensuring that the grid operates within
safe operating limits and preventing overloading or blackouts.

Building a suitable control network for the smart grid is
challenging because of the required wide coverage that reaches
all the way to smart meters. Last mile coverage is necessary
to prevent blackouts and enable the self-healing capability of
the smart grid [2]. Moreover, the communication requirements
for the control applications differ widely. Intelligent distributed
feeder automation, load control, power system protection, and
information management for low-voltage distribution, as well
as transmission of signals from utility centers to smart meters,
all have different uplink-downlink bandwidth and latency
requirements. Additionally, some of these applications require
high connection density [3]. On top of that, a major challenge
facing current power grids is the expansion of distributed
renewable energy sources, such as solar panels and wind tur-
bines, which require dynamic balancing of supply and demand.
This imbalance leads to decreased reliability, efficiency, and
environmental sustainability of the grid, as well as network
disturbances such as over-voltage, harmonics distortion, reverse
power flow, or power losses [3]. To address these challenges, 5G
technology offers a comprehensive communication toolbox that
provides more systematic communication with faster reaction
times and greater flexibility, making it an ideal solution for
smart grid control systems.

5G networks have several characteristics that are well suited
to meet the communication requirements of smart grids on
a single physical network. Additionally, integrating access
backhaul into the 5G network reduces costs by replacing optical
fiber with microwave signals as the communication medium.
Furthermore, energy companies can build their own private 5G
networks to ensure security, latency, and data delivery reliability
based on the specific requirements of their applications. The
objective of this work is to utilize 5G multi-numerology
technology to establish a cost-effective communication network
that enhances control over the power grid. This network also
improves the connectivity of power grid components to control
networks, such as Supervisory Control and Data Acquisition



(SCADA) systems, resulting in better functionality of the grid.

II. BACKGROUND AND MOTIVATION

A. Motivational Example

We use the IEEE 123-Node test feeder, Fig. 1, as an example
to demonstrate the importance of a well-designed control
network in improving the efficiency of power grids. This test
feeder is one of the benchmark systems used to evaluate the per-
formance of various algorithms and methodologies. The feeder
consists of 123 buses, including a mix of different types such as
load buses, generator buses, and substation buses. In a balanced
system, the assumption is that the loads are evenly distributed
among the three phases, and the magnitudes and characteristics
of the loads in each phase are similar. This balance ensures that
the system operates efficiently and avoids issues such as voltage
imbalances or overloading of individual phases. 123-Node test
feeder is intentionally designed to be unbalanced to reflect the
real-world distribution of loads in a distribution system.

In 123-Node test feeder, bus 76 bears loads of 105 kW,
70 kW, and 70 kW in the three phases, while bus 65 has a
load of 75 kW solely in one of the phases. However, only
19% of the demand at bus 76 and 47% at bus 65 can be met.
Next, we consider implementing a control network which aims
to regulate system-wide voltage levels by dispatching control
commands to buses in order to adjust and regulate their voltage.

To better show the impact of a control network, we install
one distributed generator on bus 62, capable of generating a
maximum of 60 KW on each phase. With the implementation
of the control network, the percentage of served demand for
bus 76 and 65 increases to 75% and 69%, respectively. It
is because with the control network in place, the control
center is capable of managing different aspects of the power
system, including power generation, voltage regulation, and
phase shifting across all three phases. This leads to a better
balance between the supply and demand of electricity, thereby
meeting more demands of power grid customers.

B. Background

5G networks offer a service known as network slicing,
which enables network operators to provide various types of
services. It divides the 5G network bandwidth into logically
isolated networks called a slice. In the context of a smart
grid, each slice will serve as a dedicated control line for
its active duration. These defined service categories include
Enhanced Mobile Broadband (eMBB), Massive Machine Type
Communications (mMTC), and Ultra-Reliable Low Latency
Communication (URLLC). Advanced applications, such as
Vehicle-to-Everything (V2X), require a combination of all
three use case types.

The power grid can use slices to customize their control
network. URLLC and mMTC slices, in particular, have
important uses in the grid. URLLC slices offer reliable and low-
latency communication between different components of the
grid, such as actuators and control systems. This allows for real-
time monitoring, control, and optimization of the grid, including
fault detection and isolation, grid stabilization, and outage
management. Moreover, mMTC slices facilitate communication

Table I: parameters of numerologies within a subframe in 5G-NR

µ subcarrier spacing slots per subframe slot duration
0 15KHz 1 1 ms
1 30KHz 2 0.5 ms
2 60KHz 4 0.25 ms
... ... ... ...
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Figure 1: IEEE 123-Node distribution test feeder

between a large number of devices and sensors distributed
across the grid, enabling data collection, analysis, and sharing,
which can help improve the overall efficiency and sustainability
of the grid. Examples of mMTC slice applications include
load forecasting, demand response, and energy management.
Therefore, the deployment of URLLC and mMTC slices in a
smart grid enhances the overall performance of the grid [4], [5].

Radio Access Network (RAN) plays a crucial role in the
5G network architecture, enabling communication between
user equipment such as sensors and actuators and remotely
controlled machines. The 5G RAN, known as NR (New Ra-
dio), uses flexible Orthogonal frequency-division multiplexing
(OFDM) technology with subcarrier spacings ranging from
15 kHz to 240 kHz. However, using a single numerology for
all scenarios may not be efficient or possible, as narrower
subcarrier spacings offer better channel equalization, while
wider subcarrier spacings offer a latency advantage. The 5G-
NR Release-17 standard defines seven numerology types (µ)
that aims to reduce RAN latency, shown in Table I. Each
numerology specifies a subcarrier spacing of 15 × 2n kHz
and a duration of 1/2n ms for n = 0, 1, 2, ..., 6, resulting in a
shorter slot duration as the numerology increases.

In our previous work [6], our focus was on developing algo-
rithms for designing a control network using a single numerol-
ogy. However, in the current work, we enhance our approach
by incorporating multiple numerologies to further optimize the
utilization of network resources. Furthermore, we extend the im-
pact of the control network to operate at the frame level, as op-
posed to the subframe level, thereby increasing its effectiveness.

This paper focuses on optimizing the allocation of RAN net-
work bandwidth with different numerologies to various slices,
ensuring proper connectivity for the power grid’s components
where meeting the requirements of various slices. We approach
this issue from a layer between the physical layer and the slices,
assuming that the infrastructure provider leases its resources to
power companies that act as Mobile Virtual Network Operators



(MVNOs). Next, MVNOs offer slices to power grid nodes,
such as sensors and actuators. This approach distributes the
computational overhead among different MVNOs. As a result,
we enhance communication between the control center and
power grid nodes, ultimately improving the controllability and
observability of the power grid. The control center is respon-
sible for regulating voltage levels throughout the entire power
system to ensure the efficient operation of the distribution grid.

C. Summary of Contributions

Our contributions in this paper include:
1) We consider a SCADA control network for the

distribution portion of the power grid and assume that all
control links are implemented as network slices. We pose an
optimization of maximizing the total served power demand
by assigning appropriate slices as a control medium between
the control center and nodes in power grid.

2) As the total served power is not an explicit function of
the decision variables, we propose a proxy objective function
capturing the observability/controllability of nodes in the grid,
weighted by their importance in the system topology and their
service in the power distribution system. The solution is a set
of assigned slices to nodes in the power grid.

3) We formulate the underlying optimization as a non-linear
problem, which is proved to be NP-hard.

4) We propose two heuristics, genetic and greedy, to solve
the optimization problem. Through extensive evaluations of the
IEEE 123-Node and 8500-Node test feeders, we demonstrate
that the proposed heuristics outperform baseline approaches.
While the genetic heuristic leads to more served load, the
greedy runs faster.

Roadmap: The remainder of the paper is organized as
follows. Section III introduces the coupled power grid and
SCADA network. Section IV formulates the optimization
problem and analyzes the complexity. Next, it presents
the proposed heuristic algorithms. Section V evaluates the
performance of the proposed solutions against benchmarks
in different test feeders. Section VI reviews related research.
Finally, Section VII concludes the paper.

III. NETWORK MODELS

This paper explores the coupling of a power grid with a
geographically co-located SCADA-based control network. The
control center has real-time access to information on the power
grid’s components through network slices. By solving the
optimal power flow problem, the control center determines the
power injection at all buses within the system and dispatches
control commands such as feeder voltage control or automatic
switching via slices.

In this section, we present the modeling of the power
distribution grid, as well as the associated control network.

A. Modeling Power Distribution Grid

Power distribution grids are composed of buses and trans-
mission lines connecting the buses together. Source substation
buses inject the power in the grid with a fixed voltage.

Fig. 1 shows a power distribution grid, where the source
buses are distinguished by circles with arrows. Distribution
systems are usually radial. A radial system has only one power
source for a group of customers and there is only one path
from a distribution substation to a given consumer. Moreover,
distribution systems are also multi-phase, where different
phases are usually unbalanced. Loads cannot be modeled
independently of their voltage. In these systems, a power failure,
short-circuit, or a downed power line would interrupt power
in the entire line which affects numerous customers.

The optimal power flow is a technique used to regulate
the voltage levels across distribution grids to improve their
efficiency. It involves managing the generation and consumption
of power to optimize objectives such as maximizing served
demand, reducing power loss or minimizing the cost of
generation [7]. There are various applications of optimal power
flow, including Volt/VAR Optimization (VVO), switching
optimization, transformer tap optimization, and Conservation
Voltage Reduction (CVR) [8]. To solve the optimal power
flow problems in our distribution systems, we employ the
semidefinite programming models formulated in [9]. As the
main focus of this paper is not on the optimal power flow
problem, we skip further explanation on it and refer to [9]
for more detailed information on the topic.

B. Modeling Control Network

In the deployment of 5G networks, the prevailing trend
is to employ small cell base stations that consist of low-
power antennas which are connected to infrastructure such
as utility poles or street lights [2]. To address the interference
between small cells, this study utilizes the Fractional Frequency
Reuse (FFR) technique in conjunction with a homogeneous
small cell deployment. FFR partitions the coverage area of
each cell into inner and outer zones, enabling every cell to
transmit on the same frequency within the inner zone, where
the majority of bandwidth resources are allocated. In contrast,
different resources are allocated to the outer zones to reduce
interference [11], as depicted in Fig. 2, We use terms “small
cell” and “cell” interchangeably for ease of reference. Also, our
analysis assumes that a constant transmission power of P is
utilized for all gNodeBs within both the inner and outer zones.
A gNodeB serves as the functional equivalent of a base station
in a traditional cellular network. Furthermore, we assume that
all communication nodes such as sensors and actuators are
equipped with battery backups and that there are no power lim-
itations imposed on uplink transmission, nor are they affected
by power grid failures. In future work, we will explore adaptive
power schemes for uplink transmission and gNodeB power

Figure 2: FFR technique: In each small cell, the blue is the part of the bandwidth
assigned to the inner zone, while the colored parts are for the outer zones [10].



management. All gNodeBs in small cells are connected to each
other through various types of backhaul links, such as fiber optic
cables [2]. Additionally, it is assumed that the control center is
connected to the gNodeB of the cell located with a fiber optic
link; thus, the control center is connected to all gNodeBs.

Based on the requirements of the smart grid discussed in
Section II, this research utilizes two types of network slices:
mMTC slices for uplink monitoring purposes and URLLC slices
for downlink control and regulation of grid equipment. As a
result, all nodes in the smart grid necessitate an mMTC slice to
transmit their updated data to the control center, while switches,
capacitors, and regulators also require URLLC slices. Moreover,
the control center is connected to all gNodeBs to utilize mMTC
and URLLC slices to receive and send information, respectively.

IV. PROBLEM FORMULATION AND ALGORITHMS

This section presents algorithms for designing the control
network, i.e. placement of slices as communication links.

A. Underlying Optimization Problem

Our objective is to maximize the total served demand in a
power distribution grid. This is achieved by optimizing the total
supplied power through the solution of the power flow problem
by the control center and transmitting control commands via
slices. However, the objective function does not directly depend
on the placement of slices, which are our decision variables. To
address this challenge, we propose the use of a proxy objective
function. As in this work we utilize multi-numerology RAN
network slicing, a brief discussion on this topic is necessary
prior to introducing the proxy objective function.

As mentioned earlier, numerology describes the frequency
and subcarrier spacing used in physical layer transmission. The
concept of multi-numerology refers to a network’s ability to
support different numerologies simultaneously, allowing for
efficient resource utilization and accommodating various ser-
vices with different requirements. In our discussion, a “chunk”
is the resource configuration of numerology. Fig.3, illustrates
a chunk as a rectangular shape located at a specific position in
the time-frequency resource grid. Set C covers all candidate
chunks in all possible positions including overlapping chunks.
Moreover, a “basic unit” refers to one unit of resource in the
time-frequency domain, where set U denotes all basic units.

Each chunk consists of four basic units. The parameter
bcu = 1 indicates that chunk c ∈ C includes basic unit u ∈ U .
For example, there are 40 basic units in Fig.3. Chunk 1 is
a 1 × 4 rectangular with numerology 0, while chunk 2 is a
2 × 2 rectangular with numerology 1. The parameter bcu is
fully determined by the chunk’s position and the numerical
indexing of the basic units. Chunk mappings are obtained in
the pre-processing phase with a complexity of O(|U ||C|).

We formulate an optimization task that selects non-
overlapping chunks to create network slices between the nodes
and the control center while satisfying the latency requirements
of URLLC slices. Here, N is set of nodes in power grid and
S = {sU , sM} is set of sets of URLLC slices and mMTC
slices. The principal used notations are explained in Table II.

Figure 3: multi-numerology resource grid
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Pr{Ds

n ≥ Ds
max} ≤ ϵ ∀n ∈ N , s ∈ sU (1f)

ycns + yc
′

n′s′ ≤ 1 ∀n, n′ ∈ N , s, s′ ∈ S,

c, c′ ∈ C with different numerology
(1g)

ycns + yc
′

ns ≤ 1, ∀n ∈ N , s ∈ S,

c, c′ ∈ C with different numerology
(1h)

ycns ≤ asn ∀n ∈ N , s ∈ S, c ∈ C (1i)
ycns ∈ {0, 1}, ∀n ∈ N , s ∈ S, c ∈ C (1j)

Problem (1) represents our optimization problem for each
time frame, each cell, and each MVNO. The objective function
(1a) aims to maximize the controllability and observability of
the power grid by measuring the expected total weight of all
the nodes that remain connected to the control center. A higher
number of connected nodes allows for better observation and
control of the grid, leading to more served power demand.
However, priorities among nodes or services differ in reality.
For instance, controlling slices between the control center
and distributed generators is more critical. Here, the binary
variable ycns = 1 indicates the assignment of chunk c to node
n to meet the requirements of slice s. We assign weights γn
and γ′

s to specify the importance of node n and service s,
respectively, and normalize their values in our simulation.

Constraint (1b) ensures that no interference occurs between
nodes in small cell while avoiding overlapping of assigned
chunks. Constraint (1c) accounts for resource limitations. Here,
we assume that the infrastructure provider allocates resource
blocks to each MVNO m ∈ M based on its service level
agreement, which determines the number of assigned resource
blocks. The access ratio between the infrastructure provider
and MVNO m is denoted by κm, and

∑
m∈M κm ≤ 1. It

also ensures that each chunk consists of four basic units.
Constraint (1d) imposes a power constraint on the gNodeB

for the duration of one TTI in the downlink direction.
Constraint (1e) implements the FFR technique, where θn
denotes the set of basic units associated with the zone in
which node n is located. Constraint (1f) limits the delay



Table II: Table of notations

Notation meaning
M Set of MVNOs

S = {sU , sM} Set of sets of URLLC slices and mMTC
slices

N set of nodes in power grid
U set of basic units
C set of candidate chunks
bcu indexing parameter,1 if chunk c includes

basic unit u
rcn maximum achievable rate on chunk c

assigned to node n
ycns binary variable, 1 if chunk c is assigned

to node n in order to satisfy the
requirement of slice s

asn binary parameter, 1 if node n requests
slice s

θn set of basic units associated with zone in
which node n is located

κm access ratio between infrastructure
provider and MVNO m

P Transmission power of gNodeB to a
particular node

Pmax Maximum transmission power of
gNodeB for each MVNO

γ′
s Priority of slice s

γn Priority of node n
Dmax

s maximum tolerable delay for slice s

outage probability of node n for URLLC service, where Ds
n

and Ds
max denote the delay of node n and the maximum

tolerable delay for URLLC slice s (s ∈ sU ), respectively.
To minimize Inter Numerology Interference (INI), constraint

(1g) optimizes the guardbands between adjacent chunks with
different numerologies. This constraint groups the flows
of the same numerology in a common band and leaves a
fixed guardband between adjacent chunks with different
numerologies. Constraint (1h) ensures that only one type of
numerology can be used at a time to serve a specific slice s
to node n. Moreover, constraint (1i) determines the required
type of slice for each node. For example, a sensor does not
require a URLLC slice. Finally, (1j) determines the binary
selection of the decision variable ycns.

Remark: The corresponding delay outage probability is given
by [12], as shown below.

Pr{Ds
n ≥ Ds

max} = e−(
∑

c∈C yc
nsr

c
n−λn

max)D
s
max

,∀n ∈ N , s ∈ sU
(2)

We use the Shannon formula to calculate the maximum
achievable rate rcn for chunk c assigned to node n. The
achievable rate depends on various factors, such as the channel
profile, transmission power, noise power, and the configuration
of chunk c which includes the time span, frequency range,
and distance of node n from the gNodeB. Since nodes are
stationary in power grids, we predefine a mapping from the
configuration parameters to the rate to compute the achieved
rate per chunk for each node.

B. Complexity Analysis

We consider a special case of our general problem (1) and
demonstrate that even with the following simplifications, the
problem remains NP-hard:

(i) The access ratio between the infrastructure provider and
MVNO, κm, is fixed at 1, and the number of basic units |U |
is unconstrained, making constraint (1c) unnecessary.

(ii) All nodes require a URLLC slice, and no node requests
an mMTC slice, so we have S = sU , and asUn = 1, allowing
us to relax constraint (1i).

(iii) We assign all resources to the inner zone by extending
the boundary of the inner zone to the cell edge, making
equation (1e) redundant as well.

(iv) Ds
max is infinite, so constraint (1f) is no longer needed.

(v) The band gap between chunks with different
numerologies is set to zero, allowing us to relax equation (1g).

(vi) Assuming using only one numerology, making
constraint (1h) unnecessary.

Therefore, problem (1) simplifies to problem (3).

max
∑
n∈N

∑
s∈sU

∑
c∈C

γnγ
′
sy

c
ns (3a)

s.t.
∑
n∈N

∑
s∈sU

∑
c∈C

bcuy
c
ns ≤ 1 ∀u ∈ U (3b)∑

n∈N

∑
c∈C

ycns P ≤ Pmax s ∈ sU (3c)

ycns ∈ {0, 1} ∀n ∈ N , s ∈ sU , c ∈ C (3d)

Theorem 1. Problem (3) is NP-hard.

Proof. We prove the NP-hardness of (3) by a reduction from
0-1 knapsack problem: given a set of I items, each with value
Vi and weight Wi (i = 1, ..., I), select subset S of items such
that

∑
i∈S Vi is maximized while Wi ≤ Ω, for a given size

Ω of the knapsack.
Construction: For each item i, construct a chunk c out of

non-overlapping basic units, which is given by a particular
MVNO to node n in order to satisfy the requirement of
controlling slice s. For this item, fix the value and cost equal
to γnγ

′
s,∀s ∈ sU and P , respectively. Let Ω = Pmax.

Claim: The optimal solution of (3) gives the optimal
solution to 0-1 knapsack problem.

Proof of the claim: The optimal solution of (3) assigns each
chunk to at most one node in order to serve the requirement
of the requested slice. Therefore, the assignment decision is
to simply assign chunk c ∈ C to node n ∈ N to satisfy the
requirement of slice s ∈ sU if ycns = 1; and assign nothing
otherwise. Let S be the set of indices of all assigned chunks
to nodes under the optimal solution to (3). Then, the total
value is

∑
i∈S Vi, also

∑
i∈S Wi ≤ Ω = Pmax. Selecting all

items corresponding to the combination of nodes and chunks
assigned by the optimal solution of (3) provides the optimal
solution to 0-1 knapsack problem.

Remark: Proving NP-hardness for the special case shows
that the general problem is NP-hard as well.

We now develop efficient algorithms for general problem (1).



C. Algorithm Design

The NP-hardness of the optimal solution to (1) motivates
us to develop efficient heuristics.

1) Genetic heuristic: We first apply a heuristic algorithm
called the genetic algorithm [13]. This algorithm belongs to a
non-deterministic class of algorithms that provide suboptimal
solutions within a controllable time frame. The genetic
algorithm works by modifying a population of possible
solutions repeatedly, such that the population evolves towards
an optimal solution. At each step, the algorithm randomly
selects solutions from the current population to be parents and
produces children for the next step.

In our work, a chromosome is defined as a specific
allocation of network slices to nodes in the power grid, with
each gene corresponding to a node and its value representing
the assigned network slice. The initial population is created
with random slice assignments. Mutation, which is based on
the priorities of nodes (γn) and slices (γ′

s), involves changing
the network slice assigned to a node. The fitness function
measures the total served demand achieved through the
regulation of injected powers at grid nodes. The goal of the
genetic algorithm is to maximize this fitness function, thereby
finding the optimal slice assignment.

2) Greedy heuristic: We propose a greedy heuristic
in Algorithm 1 for the general problem (1). Here set
|ycns|k = {ynsc1 , ..., yckns} indicates the assignment of k
chunks to node n in order to satisfy the requirements of slice
s. The greedy heuristic approach is designed to make the
locally optimal choice at each stage with the aim of finding
a global optimum. It works by assigning network slices to
nodes in a way that maximizes the served demand at each step.
The rationale is that nodes which can serve a higher demand
are more critical to the operation of the power distribution
system, so assigning network slices to these nodes first will
have a greater impact on the total served demand. The greedy
heuristic runs polynomial time faster than the genetic heuristic.

Algorithm 1: Greedy Algorithm

1 Input: Input parameters of (1)
2 Output: ycns

1: for each node and each slice, calculate k, the
minimum number of required chunks to satisfy the
requirement of requested slices

2: S ← ∅;
3: while ∃ c ∈ C \S such that S ∪ |ycns|k satisfies (1b) -

(1i) and U \S ≥ k do
4: S∗ ← argmax|yc

ns|k: S∪|yc
ns|ksatisfies (1b)-(1i) objective

(1a) under assignment of (S ∪ |ycns|k);
5: S ← S ∪ S∗;
6: Convert S to ycns;

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of the
proposed algorithms on various power distribution test systems.

A. Benchmarks and metrics

To evaluate the effectiveness of the proposed algorithms, we
compare the performance of following benchmarks:
1) the genetic algorithm;
2) the greedy algorithm 1;
3) BC method, which prioritizes nodes based on their
betweenness centrality and allocates basic units to nodes with
higher betweenness centrality first to satisfy the requirement of
their demanded slices. Mathematically, betweenness centrality
of a node is calculated by considering the fraction of shortest
paths between all pairs of nodes in the network that pass
through that particular node. Here, we model the power grid as
a graph, where the nodes and edges of the graph represent the
buses and transmission lines in the power grid, respectively.
4) Random method, which randomly selects nodes and allocates
basic units to them until available basic units are exhausted
or power constraints are violated. We test the random method
with 100 different cases and report the average result.

We evaluate the performance of each solution by measuring
the total served power after the control center executes the
optimal power flow model and regulates the power injection
of nodes in the grid. All algorithms are implemented in
MATLAB R-2022b. The power flow model is calculated using
CVX, which is integrated into MATLAB.

B. Simulation Setup

We evaluate the proposed solutions using two well-
established test feeders commonly employed in power systems
research: the IEEE 123-Node and 8500-Node test feeders [14].
These test feeders represent simplified models of actual
distribution circuits and include unbalanced loading, switches,
shunt capacitors, and voltage regulators to compensate for
severe voltage drops caused by loaded transmission lines. To
further simulate real-world scenarios, we also incorporate the
installation of various types of distributed generation, such
as rooftop solar PV systems within the test feeders. We install
10 distributed generation units at nodes in the IEEE 123-Node
test feeder, and 100 distributed generation units in the IEEE
8500-Node test feeder. The topology of the IEEE 123-Node
test feeder is shown in Fig. 1. Next, these power distribution
systems are mapped to an urban area, where the nodes are
assigned to city blocks. We consider a rectangular city block in
Chicago measuring 330 by 660 feet [15]. We assume that the
antennas are placed on the roofs of the buildings, and only line-
of-sight transmission is considered. We use homogeneous cell
deployment, where one gNodeB is placed at the center of each
cell with a radius of 250 meters. The maximum transmission
power of each gNodeB is Pmax = 20 W, and the transmission
power from a gNodeB to any particular node is P = 30 dBm
[16]. Each test feeder is covered by multiple cells. We assume
the control center is located at the highest-degree node in the
test feeders and is connected to all gNodeBs in cells.

We assume a system bandwidth of W = 20 MHz with a
carrier frequency of 2 GHz. To implement the FFR technique,
we divided the total bandwidth of each cell between the inner
zone and three outer zones. We allocated 2/3 of the resources
to the inner zone while assigning 1/9 of resources to each



outer zone. The boundary of the inner zone was defined based
on the path loss threshold, set to the path loss between the
gNodeB and a node located at 2/3 of the cell radius. For
simplicity, we assume only one MVNO exists in each cell
with an SLA equal to 1. However, the results can be easily
extended to numerous MVNOs with different SLAs. In this
study, we assumed that all nodes required mMTC slices for
monitoring purposes, while URLLC slices were only requested
by generators, switches, shunt capacitors, and regulators to
receive control commands from the control center. Please note
that the number of required basic units for each slice depends
on the channel gain between the gNodeB and nodes.

C. Results

This section compares and analyzes the performance of all
benchmark algorithms in relation to each other.

1) Setting Design Parameters:

Table III: design parameters based on the performance of 123-Node
test feeder (percentage of total served demand compared to the fully controllable case)

(a) different numerology

scenario numerology genetic greedy no control
1 µ = 0 57 43 24
2 µ = 1 62 50 24
3 µ = 0 & 1 75 68 24

(b) different node weights

degree BC power degree.*power BC.*power
genetic 56 59 44 66 75
greedy 49 54 40 62 68

(c) different slice weight ratio (importance of URLLC slice over mMTC slice)

0.5 1 2 3 4 5
genetic 54 59 65 75 76 76
greedy 48 53 60 68 68 69

Table III shows the impact of different design parameters
of genetic and greedy heuristics on the assignment of slices
for the IEEE 123-Node test feeder. The allocation of different
sets of slices results in different control networks. This table
showcases the ratio of total served demand achieved through
the regulation of injected powers at grid nodes through the
designed control network compared to the scenario where the
control network has secure and full connectivity between all
nodes and the control center. The test feeder is covered by 12
cells, and each cell is assigned 72 basic units. Moreover, the
maximum tolerable delay for URLLC slices is set to 0.75 ms.

Impact of numerology: Table IIIa demonstrates the effect of
different numerologies in slice assignment on the total served
demand. In scenario 1, only numerology 0 is utilized for all
slices. In scenario 2, only numerology 1 is employed for all
slices. In scenario 3, a combination of numerology 1 and
numerology 0 is utilized simultaneously, where numerology
1 assigned to URLLC slices and numerology 0 assigned to
mMTC slices. The results demonstrate that scenario 3 serves
higher demand power due to the increased flexibility in the
allocation of basic units. Scenario 2 outperforms scenario 1,
primarily due to its shorter subcarrier spacing, which satisfies

the delay requirement with fewer chunks. Additionally, the
genetic algorithm provides superior performance compared to
the greedy heuristic. Throughout the remainder of this paper,
we adopt the usage of two numerologies: numerology 1 for
URLLC slices and numerology 0 for mMTC slices.

Impact of node weight definition: Table IIIb showcases
the impact of different node weight definitions or γn in slice
assignment on the total served demand. We consider the
following definitions: (i) degree, (ii) betweenness centrality
(BC), (iii) power injection, (iv) power injection multiplied by
degree, and (v) power injection multiplied by BC. The results
indicate that the node weight definition of the product of the
betweenness centrality and the real power injected at the node
yields the best performance. This definition incorporates both
the topological importance (betweenness centrality) and the
service relevance (power injection) of nodes. Therefore, we
use this definition for the remainder of this paper.

Impact of slice weight definition: Table IIIc illustrates the
impact of different slice weight definitions or γ′

s in slice assign-
ment on the total served demand. While monitoring the status
and collecting data from various nodes in the power grid is
crucial for proper operation, the controlling aspect plays an even
more critical role. SCADA systems facilitate functions such
as feeder voltage control and automatic switching through dis-
patching control commands. Since no existing data provides in-
formation on the relative importance of controlling versus moni-
toring actions in SCADA systems, we compare the performance
of our proposed algorithms using different ratios of γ′sU/γ

′sM
, which represents the weight of URLLC slices over mMTC
slices. The results demonstrate a significant performance im-
provement as this ratio increases, indicating the importance of
controlling commands. Consequently, we set γ′sU/γ

′sM = 3.
2) Overall Comparison of all baselines:
Impact of numbers of basic units: Fig. 4 presents a com-

parison of the algorithms’ performance in terms of served
power for the IEEE 123 and 8500-Node test feeders with
different numbers of basic units for each cell. This figure clearly
illustrates that the utilization of more basic units leads to higher
delivered power. This can be attributed to the increased number
of nodes that can be monitored and controlled, resulting in an
overall improvement in the total served power. Moreover, the
genetic heuristic consistently outperforms all other baselines,
emphasizing the significance of strategic slice placement.
Following closely, the greedy algorithm demonstrates good
performance as the second-best algorithm. The BC method,
which prioritizes nodes with higher betweenness centrality,
ranks third among the algorithms. Intuitively, these nodes have
a significant impact on other nodes in radial power distribution
grids. As expected, the random benchmark provides the lowest
performance, confirming the importance of employing sophis-
ticated algorithms. This trend holds true for both test feeders.

Impact of URLLC delay tolerance: Fig. 5 compares the
performance of all algorithms by varying the maximum
tolerable delay of URLLC slices for 123- and 8500-Node
test feeders. Each cell is assigned 72 basic units. Results
show that as the delay increases, the control network delivers
more power. This is because fewer chunks are needed to
create slices, resulting in a higher number of observable



and controllable nodes. Furthermore, the genetic heuristic
consistently outperforms the other baseline algorithms.

Finally, Fig. 6 presents the utilization of basic units by
different methods. We examine the distribution of basic units
for one of the cells in 123-Node test feeder. In this analysis,
the maximum acceptable delay for URLLC connections is set
to 0.75 ms, and the total number of resource units available in
each cell is 72. The results indicate that the genetic algorithm
and the greedy algorithm exhibit the most efficient utilization
of resources, whereas the random method inefficiently allocates
a substantial portion of resources to guardbands.

3) Comparison over frame: In the previous subsections, we
presented the results for when the frame is composed of a single
subframe. In Fig. 7, we extend our analysis to a frame consisting
of multiple subframes. We increase the frame length from 1
to 10 subframes while considering two different numerologies:
numerology 0 for mMTC slice and numerology 1 for URLLC
slice. The tolerable delay for URLLC slice remains at 0.75 ms,
and each cell is allocated a total of 72 resource units. This figure
illustrates the ratio of total served demand after regulating the
power of the grid’s components. A comparison is made with the
scenario of secure and full connectivity between all nodes and
the control center. It is assumed that the control center has com-
plete knowledge of the grid prior to the initiation of the frame,
and at each subframe, it receives updated information from
the sensors connected through mMTC. The results depicted in
Fig. 7 demonstrate that a longer frame duration allows for en-
hanced control over the grid, leading to improved performance.

VI. RELATED WORK

Network slicing offers numerous benefits, but efficiently allo-
cating resources for multiple network slices over a shared phys-
ical infrastructure remains a challenging problem. The main ob-
jective of resource allocation in network slicing is to allocate vir-
tual resources, such as computing and bandwidth, for each net-
work slice and user based on their service requirements and the
network’s status [17]. Several studies have proposed solutions to
address this problem, including a novel RAN network slicing ar-
chitecture for a flexible and cost-effective multi-service mobile
network [18], resource allocation for high-quality selection of
radio points of access, Virtual Network Function placement, and
data routing [19], and optimal resource allocation in C-RAN
with the goal of reducing overall cost [20]. Prioritized admission
mechanisms have also been proposed to improve resource
utilization and user experience in RAN [21]. Additionally, some
studies have explored network slicing for dynamic resource de-
mand and availability in a mobile environment [22]. The authors
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Figure 4: Performance evaluation for test feeders under different numbers of basic units
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Figure 5: Performance evaluation for different test feeders under various delays

in [23], [24] focus on RAN network slicing architecture that uti-
lizes spectrum resources in both licensed and unlicensed bands.

5G-NR has been designed to support various verticals
with diverse requirements. Despite the different numerologies
defined in 5G-NR, a significant amount of literature uses a
single numerology throughout the network slice’s lifetime [6],
[11], [12], [25], [26]. In contrast, the authors in [27] utilize
multi-numerology network slicing and develop a mathematical
framework to analyze the blocking probabilities of both eMBB
and URLLC services. To address the diverse requirements of
UEs, novel scheduling solutions based on Deep Reinforcement
Learning have been introduced by [28]–[31] for resource
allocation and numerology selection. In addition, [32] proposes
a channel quality and Quality of Service (QoS)-aware resource
allocation scheme for a multi-numerology 5G network.

There is a significant amount of research being conducted
on optimizing energy trading in microgrid systems. The
authors in [33], [34] use various machine learning techniques
to address various challenges such as reducing energy costs,
ensuring a stable energy supply, integrating renewable energy
sources, and managing energy storage devices effectively.

VII. CONCLUSION & FUTURE WORK

The integration of 5G into the control network of smart grids
brings numerous benefits, allowing power companies to allocate
resources to different network slices and leverage latency,
connectivity, speed, and throughput requirements. This not
only enhances the controllability and connectivity of grid com-
ponents but also offers cost savings through network slicing.

This research focuses on the allocation of bandwidth in
5G-NR RAN network slicing to optimize the controllability
and connectivity of grid components. We not only prove the
NP-hardness of the proposed solution but also develop efficient
heuristics to tackle the problem. Extensive simulations on
the IEEE 123- and 8500-Node test feeders demonstrate the
effectiveness of the proposed algorithms in achieving a balanced
power grid with maximized power delivery.

Despite the considerable potential benefits, there are still
several challenges that require attention. In future work, we

(a) genetic (b) greedy (c) bc (d) random

Figure 6: Basic units assignment under different methods for IEEE 123-Node test feeder
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Figure 7: Performance evaluation of different test feeders under varying frame durations

will emphasize the maintenance of Service Level Agreements
(SLAs), Quality of Service (QoS), and security assurance for
each network slice. Additionally, we will explore spectrum
slicing and allocation strategies for scenarios involving user
consumption prediction, ensuring efficient resource utilization.
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