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ABSTRACT

This work aims at improving the energy efficiency of decen-
tralized learning by optimizing the mixing matrix, which con-
trols the communication demands during the learning process.
Through rigorous analysis based on a state-of-the-art decen-
tralized learning algorithm, the problem is formulated as a
bi-level optimization, with the lower level solved by graph
sparsification. A solution with guaranteed performance is
proposed for the special case of fully-connected base topol-
ogy and a greedy heuristic is proposed for the general case.
Simulations based on real topology and dataset show that the
proposed solution can lower the energy consumption at the
busiest node by 54%–76% while maintaining the quality of
the trained model.

1. INTRODUCTION

Learning from decentralized data [1] is an emerging machine
learning paradigm that has found many applications [2].
Communication efficiency has been a major consideration
in designing learning algorithms, as the cost in communi-
cating model updates, e.g., communication time, bandwidth
consumption, and energy consumption, dominates the total
operation cost in many application scenarios [1]. Existing
works on reducing this cost can be broadly classified into
(i) model compression for reducing the cost per communica-
tion [3] and (ii) hyperparameter optimization for reducing the
number of communications until convergence [4]. The two
approaches are orthogonal and can be applied jointly.

In this work, we focus on hyperparameter optimization in
the decentralized learning setting, where nodes communicate
with neighbors according to a given base topology [5]. To
this end, we adopt a recently proposed optimization frame-
work from [6] that allows for systematic design of a critical
hyperparameter in decentralized learning, the mixing matrix,
to minimize a generally-defined cost measure. The choice of
mixing matrix as the design parameter utilizes the observation
from [7] that not all the links are equally important for con-
vergence. Hence, instead of communicating over all the links
at the same frequency as in most of the existing works [1, 4],
communicating on different links with different frequencies
can further improve the communication efficiency. However,
the existing mixing matrix designs [7, 6] fall short at ad-
dressing a critical cost measure in wireless networks: energy

consumption at the busiest node. Although energy consump-
tion is considered in [6], its cost model only captures the
total energy consumption over all the nodes. In this work, we
address this gap based on a rigorous theoretical foundation.

1.1. Related Work

Decentralized learning algorithms. The standard algorithm
for learning under a fully decentralized architecture was an
algorithm called Decentralized Parallel Stochastic Gradient
Descent (D-PSGD) [5], which was shown to achieve the same
computational complexity but a lower communication com-
plexity than training via a central server. Since then a number
of improvements have been developed, e.g., [8], but these
works only focused on the number of iterations.
Communication cost reduction. One line of works tried
to reduce the amount of data per communication through
model compression, e.g., [3]. Another line of works reduced
the frequency of communications, e.g., [4]. Later works
[9, 10] started to combine model compression and infrequent
communications. Recently, it was recognized that better
tradeoffs can be achieved by activating subsets of links, e.g.,
via event-based triggers [9, 10] or predetermined mixing ma-
trices [7, 6]. Our work is closest to [7, 6] by also designing
the mixing matrix, but we address a different objective of
maximum per-node energy consumption.
Mixing matrix design. Mixing matrix design has been con-
sidered in the classical problem of distributed averaging, e.g.,
[11, 12] designed a mixing matrix with the fastest conver-
gence to ϵ-average and [13] designed a sequence of mixing
matrices to achieve exact average in finite time. In contrast,
fewer works have addressed the design of mixing matrices in
decentralized learning, e.g., [7, 6]. We refer to [14] for a more
complete overview of related works.

1.2. Summary of Contributions

We study the design of mixing matrix in decentralized learn-
ing with the following contributions:

1) Instead of considering the total energy consumption as
in [6], our design aims at minimizing the energy consumption
at the busiest node, leading to a more balanced load.

2) Instead of using a heuristic objective as in [7] or a par-
tially justified objective as in [6], we use a fully theoretically-
justified design objective, which enables a new approach for



mixing matrix design based on graph sparsification.
3) Based on the new approach, we propose an algorithm

with guaranteed performance for a special case and a greedy
heuristic for the general case. Our solution achieves 54%–
76% lower energy consumption at the busiest node while pro-
ducing a model of the same quality as the best-performing
benchmark in simulations based on real topology and dataset.

Roadmap. Section 2 formulates our problem, Section 3
presents the proposed solution, Section 4 evaluates it against
benchmarks, and Section 5 concludes the paper. Proofs and
additional evaluation results are provided in [14].

2. BACKGROUND AND PROBLEM FORMULATION

2.1. Decentralized Learning Algorithm

Consider a network of m nodes connected through a base
topology G = (V,E) (|V | = m), where E defines the pairs of
nodes that can directly communicate. Each node i ∈ V has a
local objective function Fi(x) that depends on the parameter
vector x ∈ Rd and its local dataset. The goal is to minimize
the global objective function F (x) := 1

m

∑m
i=1 Fi(x).

We consider a state-of-the-art decentralized learning al-
gorithm called D-PSGD [5]. Let x(k)

i (k ≥ 1) denote the pa-
rameter vector at node i after k−1 iterations and g(x

(k)
i ; ξ

(k)
i )

the stochastic gradient computed in iteration k. D-PSGD runs
the following update in parallel at each node i:

x
(k+1)
i =

m∑
j=1

W
(k)
ij (x

(k)
j − ηg(x

(k)
j ; ξ

(k)
j )), (1)

where W (k) = (W
(k)
ij )mi,j=1 is the m × m mixing matrix in

iteration k, and η > 0 is the learning rate. To be consistent
with the base topology, W (k)

ij ̸= 0 only if (i, j) ∈ E.
The convergence of this algorithm is guaranteed under the

following assumptions:

(1) Each local objective function Fi(x) is l-Lipschitz smooth,
i.e.,1 ∥∇Fi(x)−∇Fi(x

′)∥ ≤ l∥x− x′∥, ∀i ∈ V .

(2) There exist constants M1, σ̂ such that 1
m

∑
i∈V IE[∥g(xi; ξi)−

∇Fi(xi)∥2] ≤ σ̂2 + M1
m

∑
i∈V ∥∇F (xi)∥2, ∀x1, . . . ,xm ∈

Rd.

(3) There exist constants M2, ζ̂ such that 1
m

∑
i∈V ∥∇Fi(x)∥2 ≤

ζ̂2 +M2∥∇F (x)∥2,∀x ∈ Rd.

Theorem 2.1. [15, Theorem 2] Let J := 1
m11⊤. Under

assumptions (1)–(3), if there exist a constant p ∈ (0, 1] such
that the mixing matrices {W (k)}Kk=1, each being symmetric
with each row/column summing to one2, satisfy

IE[∥XW (k) −XJ∥2F ] ≤ (1− p)∥X −XJ∥2F , (2)

1For a vector a, ∥a∥ denotes the ℓ-2 norm. For a matrix A, ∥A∥ denotes
the spectral norm, and ∥A∥F denotes the Frobenius norm.

2Originally, [15, Theorem 2] had a stronger assumption that each mixing
matrix is doubly stochastic, but we have verified that it suffices to have each
row/column summing to one.

for all X := [x1, . . . ,xm] and integer k ≥ 1, then D-PSGD
can achieve 1

K

∑K
k=1E[∥∇F (xk)∥2] ≤ ϵ0 for any given

ϵ0 > 0 (x(k) := 1
m

∑m
i=1 x

(k)
i ) when the number of itera-

tions reaches

K(p) := l(F (x(1))− Finf)

·O
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p
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√
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)
.

Remark: The required number of iterations K(p) depends
on the mixing matrix only through the parameter p: the larger
p, the smaller K(p). Originally, [15, Theorem 2] only man-
dates (2) for the product of τ mixing matrices, but we consider
the case of τ = 1 for the tractability of mixing matrix design.

2.2. Mixing Matrix

As node i needs to send its parameter vector to node j in
iteration k only if W (k)

ij ̸= 0, we can control the communica-
tions by designing the mixing matrix W (k). To this end, we
use W (k) := I − L(k), where L(k) is the weighted Lapla-
cian matrix [16] of the topology G(k) = (V,E(k)) activated
in iteration k. Given the incidence matrix3 B of the base
topology G and a vector of link weights α(k), the Laplacian
matrix L(k) is given by L(k) = B diag(α(k))BT . The above
reduces the mixing matrix design problem to a problem of
designing the link weights α(k), where a link (i, j) ∈ E will
be activated in iteration k if and only if α(k)

(i,j) ̸= 0. This
construction guarantees that W (k) is symmetric with each
row/column summing up to one.

2.3. Cost Model

We use c(α(k)) := (ci(α
(k)))mi=1 to denote the cost vector

in an iteration when the link weight vector is α(k). We focus
on the energy consumption at each node i, which contains
two parts: (i) computation energy cai for computing the local
stochastic gradient and the local aggregation, and (ii) commu-
nication energy cbij for sending the updated local parameter
vector from node i to node j. Then the energy consumption
at node i in iteration k is modeled as

ci(α
(k)) := cai +

∑
j:(i,j)∈E

cbij1(α
(k)

(i,j) ̸= 0), (3)

where 1(·) denotes the indicator function. This cost func-
tion models the basic scenario where all communications are
point-to-point and independent. Other scenarios are left to
future work.

2.4. Optimization Framework

To trade off between the cost per iteration and the conver-
gence rate, we adopt a bi-level optimization framework:

3Matrix B is a |V | × |E| matrix, defined as Bij = 1 if link ej starts at
node i (under arbitrary link orientation), −1 if ej ends at i, and 0 otherwise.



Lower-level optimization: design link weights α to maxi-
mize the convergence rate (by maximizing p) under a given
budget ∆ on the maximum cost per node in each iteration,
which results in a required number of iterations of K(p∆).
Upper-level optimization: design ∆ to minimize the total
maximum cost per node ∆ ·K(p∆).

3. MIXING MATRIX DESIGN VIA GRAPH
SPARSIFICATION

As the upper-level optimization only involves one scalar de-
cision variable, we will focus on the lower-level optimization.

3.1. Simplified Objective

The parameter p that minimizes the required number of iter-
ations K(p) is given by

p := min
X ̸=0

(
1− IE[∥X(W − J)∥2F ]

∥X(I − J)∥2F

)
. (4)

As (4) is not an explicit function of the mixing matrix, we
first relate it to an equivalent quantity that is easier to handle.
We can relate p to an explicit function of W as follows.

Lemma 3.1. For any randomized mixing matrix W that is
symmetric with every row/column summing to one, p defined
in (4) satisfies p = 1− ρ for ρ := ∥IE[W⊤W ]− J∥.

Lemma 3.1 implies that the lower-level optimization
should minimize ρ. While it is possible to formulate this
minimization in terms of the link weights α, the resulting
optimization problem, with a form similar to [6, (18)], will be
intractable due to the presence of non-linear matrix inequality
constraint. We thus further simplify the objective as follows.

Lemma 3.2. For any mixing matrix W := I − L, where L
is a randomized Laplacian matrix,

ρ ≤ IE
[
∥I −L− J∥2

]
(5)

= IE
[
max

(
(1− λ2(L))2, (1− λm(L))2

)]
, (6)

where λi(L) denotes the i-th smallest eigenvalue of L.

By Lemma 3.2, we relax the objective of the lower-level
optimization to designing a randomized α by solving

min
α

IE
[
∥I −B diag(α)B⊤ − J∥2

]
(7a)

s.t. IE[ci(α)] ≤ ∆, ∀i ∈ V. (7b)

3.2. Idea on Leveraging Graph Sparsification

We propose to solve the relaxed lower-level optimization (7)
based on graph (spectral) sparsification. First, we compute the
optimal link weight vector α′ without the budget constraint
(7b) by solving the following optimization:

min
α

ρ̃ (8a)

s.t. − ρ̃I ⪯ I −B diag(α)B⊤ − J ⪯ ρ̃I. (8b)

Constraint (8b) ensures ρ̃ = ∥I − B diag(α)B⊤ − J∥ at
the optimum, i.e., α′ minimizes ∥I − B diag(α)B⊤ − J∥.
Optimization (8) is a semi-definite programming (SDP) prob-
lem that can be solved in polynomial time by existing al-
gorithms [17]. The vector α′ establishes a lower bound
on the relaxed objective: if α∗ is the optimal randomized
solution for (7), then IE

[
∥I −B diag(α∗)B⊤ − J∥2

]
≥

∥I −B diag(α′)B⊤ − J∥2.
Then, we use a graph sparsification algorithm to sparsify

the weighted graph with link weights α′ to satisfy the budget
constraint. As ∥I − B diag(α′)B⊤ − J∥2 = max

(
(1 −

λ2(B diag(α′)B⊤))2, (1 − λm(B diag(α′)B⊤))2
)
, and

graph sparsification aims at preserving the original eigenval-
ues

(
λi(B diag(α′)B⊤)

)m
i=1

[18], the sparsified link weight
vector αs is expected to achieve an objective value ∥I −
B diag(αs)B

⊤ −J∥2 that approximates the optimal for (7).

3.3. Algorithm Design

We now apply the above idea to develop algorithms for mix-
ing matrix design.

3.3.1. Ramanujan-Graph-based Design for a Special Case

Consider the special case when the base topology G is a com-
plete graph and all transmissions by a node have the same
cost, i.e., cbij ≡ cbi for all j such that (i, j) ∈ E. Let d :=

mini∈V ⌊(∆−cai )/c
b
i⌋. Then any graph with degrees bounded

by d satisfies the budget constraint. The complete graph has
an ideal sparsifier known as Ramanujan graph. A d-regular
graph H is a Ramanujan graph if all the non-zero eigenval-
ues of its Laplacian matrix LH lie between d− 2

√
d− 1 and

d+2
√
d− 1 [19]. By assigning weight 1/d to every link of a

Ramanujan graph H , we obtain a weighted graph H ′, whose
Laplacian LH′ satisfies λ1(LH′) = 0 and

1− 2
√
d− 1

d
≤ λ2(LH′) ≤ · · · ≤ λm(LH′) ≤ 1 +

2
√
d− 1

d
.

By Lemma 3.2, the deterministic mixing matrix WH′ := I−
LH′ achieves a ρ-value ρH′ that satisfies

ρH′ ≤ max
(
(1− λ2(LH′))2, (1− λm(LH′))2

)
≤ 4(d− 1)

d2
= O

(
1

d

)
= O

(
1

∆

)
.

Ramanujan graphs can be easily constructed by drawing ran-
dom d-regular graphs until satisfying the Ramanujan defini-
tion [20]. By the result of [21], for d ≤ m1/3, we can generate
random d-regular graphs in polynomial time. Thus, the above
method can efficiently construct a deterministic mixing ma-
trix with guaranteed performance in solving the lower-level
optimization for a given budget ∆ such that d ≤ m1/3.

3.3.2. Greedy Heuristic for General Case

For the general case, ideally we want to sparsify a weighted
graph G′ with link weights α′ such that the sparsified graph



with link weights αs will approximate the eigenvalues of G′

while satisfying the constraint ci(αs) ≤ ∆ for each i ∈ V .
While this remains an open problem for general graphs,
we propose a greedy heuristic based on the intuition that the
importance of a link is reflected in its absolute weight. Specif-
ically, we will find the link (i, j) with the minimum absolute
weight according to the solution to (8) such that the cost for
either node i or node j exceeds the budget ∆, set α(i,j) = 0,
and then find the next link by re-solving (8) under this addi-
tional constraint, until all the nodes satisfy the budget.

4. PERFORMANCE EVALUATION

We evaluate the proposed solution for the general case based
on a real dataset and the topology of a real wireless network.
We defer the evaluation in the special case to [14].

Experiment setting: We consider training for image clas-
sification based on CIFAR-10, which consists of 60,000 color
images in 10 classes. We train the ResNet-50 model over its
training dataset with 50,000 images, and then test the trained
model over the testing dataset with 10,000 images. We use
the topology of Roofnet [22] at data rate 1 Mbps as the base
topology, which contains 33 nodes and 187 links. To evaluate
the cost, we set the computation energy as cai = 0.0003342
(Wh) and the communication energy as cbij = 0.0138 (Wh)
based on our parameters and the parameters from [23]4. Fol-
lowing [6], we set the learning rate as 0.8 at the beginning
and reduce it by 10X after 100, 150, 180, 200 epochs, and the
mini-batch size to 32.

Benchmarks: We compare the proposed solution with
with four benchmarks: ‘Vanilla D-PSGD’ [5] where all the
neighbors communicate in all the iterations, ‘Periodic’ where
all the neighbors communicate periodically, ‘MATCHA’ [7]
which was designed to minimize training time, and Algo-
rithm 1 in [6] (‘Greedy total’ ) for the cost model (3) which
was designed to minimize the total energy consumption5.
In ‘Vanilla D-PSGD’, ‘Periodic’, and ‘MATCHA’, identi-
cal weights are assigned to every activated link, whereas in
‘Greedy total’ and the proposed algorithm, heterogeneous
link weights are parts of the designs. We first tune MATCHA
to minimize its loss at convergence, and then tune the other
benchmarks to activate the same number of links on the
average. We evaluate two versions of the proposed algo-
rithm (‘Greedy per-node’ ): one with the same maximum
energy consumption per node as the best-performing bench-

4Our model size is S = 2.3MB, batch size is 32, and processing speed
is 8ms per sample. Assuming 1Mbps links and TX2 as the hardware, whose
power is 4.7W during computation and 1.35W during communication [23],
we estimate the computation energy by cai = 4.7 ∗ 32 ∗ 0.008/3600 ≈
0.0003342Wh, and the communication energy with each neighbor by cbij =

2 ∗ 1.35 ∗ S ∗ 8/1/3600Wh, where the multiplication by 2 is because this
testbed uses WiFi, which is half-duplex.

5While the final solution in [6] was randomized over a set of mixing
matrices, we only use the deterministic design by Algorithm 1 for a fair com-
parison, as the same randomization can be applied to the proposed solution.

Fig. 1. Training loss and testing accuracy for decentralized
learning over Roofnet.

mark (leading to a budget that amounts to 55% of maximum
degree) and the other with the same accuracy as the best-
performing benchmark at convergence (leading to a budget
that amounts to 25% of maximum degree).

Results: Fig. 1 shows the loss and accuracy of the trained
model, with respect to both the epochs and the maximum
energy consumption per node. We see that: (i) instead of
activating all the links as in ‘Vanilla D-PSGD’, it is possible
to activate fewer (weighted) links without degrading the qual-
ity of the trained model; (ii) different ways of selecting the
links to activate lead to different quality-cost tradeoffs; (iii)
the algorithm designed to optimize the total energy consump-
tion (‘Greedy total’) performs the best among the bench-
marks; (iv) however, by balancing the energy consumption
across nodes, the proposed algorithm (‘Greedy per-node’)
can achieve either a better loss/accuracy at the same max-
imum energy consumption per node, or a lower maximum
energy consumption per node at the same loss and accuracy.
In particular, the proposed algorithm (at 25% maximum de-
gree) can save 54% energy at the busiest node compared to
the best-performing benchmark (‘Greedy total’) and 76%
compared to ‘Vanilla D-PSGD’, while producing a model of
the same quality. Meanwhile, the proposed algorithm also
saves 41–71% of the total energy consumption compared to
the benchmarks, as shown in [14, Table 1].

5. CONCLUSION

Based on an explicit characterization of how the mixing ma-
trix affects the convergence rate in decentralized learning, we
proposed a bi-level optimization for mixing matrix design,
with the lower level solved by graph sparsification. This en-
abled us to develop a solution with guaranteed performance
for a special case and a heuristic for the general case. Our so-
lution greatly reduced the energy consumption at the busiest
node while maintaining the quality of the trained model.
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